
Xenon: An RDF Stylesheet Ontology
Dennis Quan

IBM T. J. Watson Research Center
1 Rogers Street

Cambridge, MA 02142 USA
+1 617 693 4612

dennisq@us.ibm.com

David R. Karger
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139 USA

+1 617 258 6167

karger@mit.edu

ABSTRACT
Bringing information to bear from diverse sources to automate
tedious processes for the user is a key tenet of the Semantic Web
vision. In previous papers we argued that visualizing
semantically-connected corpora is not only a prime example of
one of these processes but is also a critical problem that must be
solved to gain acceptance from the broader community as to the
benefits of RDF. In this paper we elaborate on the specific topic
of ontologies for describing how resources should be presented to
the user. We propose the creation of an RDF stylesheet language,
reusing many of the key ideas of the XSL Transformations
language (XSLT), but incorporating the requirement that when
multiple ontologies are used in the description of a resource to be
presented, multiple stylesheets, potentially from different authors,
will need to be composed. This notion of enabling heterogeneous
composition motivates the definition of our basic building block
concepts of view and lens. In addition to abstractly characterizing
our notion of an RDF stylesheet, we also describe our concrete
instantiation of these ideas in the Xenon ontology. Finally, we
give a concrete example illustrating how our stylesheet
mechanisms enable developers to easily produce both HTML-
based and custom rich client-based browsers for heterogeneous
datasets.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Human Factors, Languages.

Keywords
Stylesheet, XSLT, RDF, Semantic Web.

1. INTRODUCTION
The Semantic Web vision proposes enabling radically new forms
of automation from multiple information sources being made
compatible with one another through a common representation—
RDF. RDF Schema and OWL provide ways of describing how the
concepts in different corpora with different schemas relate to one
another. When a Semantic Web agent encounters data that
invokes terms from multiple ontologies, it can use OWL
definitions to intelligently decide how to deal with this data. The

key concept from OWL we wish to highlight is heterogeneous
composition—the notion that the knowledge embedded in OWL
ontologies written by multiple parties can be readily combined to
facilitate making inferences from across information corpora.

We argued in a previous paper [1] that providing a “user agent” is
a fundamental prerequisite to the proliferation of the Semantic
Web. By user agent we are referring to a Semantic Web browser,
which, like previous user agents (e.g., the Web browser), is
responsible for allowing users to navigate information corpora
and consequently instilling in users the ability to experience the
power of information integration first hand.

Like other Semantic Web agents, the Semantic Web browser must
deal with the metadata heterogeneity that is both a strength and a
source of complexity for the Semantic Web. In our previous
paper, we defined the concept of lens—a component that extracts
and displays a set of related information about a resource.
Building browsing interfaces around lenses enables a limited form
of heterogeneous composition because lenses can be defined to
work across multiple classes and lenses from multiple authors can
be combined at runtime to highlight information from different
ontologies.

In this paper we take a step back from lenses to describe a more
general mechanism for enabling heterogeneous composition for
user agents. We term this mechanism a “stylesheet ontology” in
analogy to the use of stylesheets on the Web and for XML as a
way to abstract presentation from content. If we assume that
stylesheets were deemed useful in the HTML and XML contexts,
we claim that RDF possesses an even stronger need for
stylesheets. HTML (and to some degree XML as well, when the
schema in play is simple) is designed to yield human-readable
content in a browser, whereas datasets that utilize the expressive
power of RDF are rarely human-readable—regardless of the
syntax used. Even when RDF is expressed in Notation3 syntax
[7], one finds it challenging to discern the connected graph of
relationships embedded in RDF content to the user through a
straightforward textual syntax.

Our goal is to allow the creation of “intuitive” user interfaces that
are specialized to specific kinds of resources and to specific
situations. For example, resources shown on the screen should be
properly identified by some human-readable appellation and
almost never by a URI. Rarely are all the properties of a resource
relevant in a given context; they should be properly filtered so as
to not overload the user. The properties that are relevant need to
be laid out and ordered in a sensible fashion or according to an
accepted convention. Additionally, the user should not be
impeded by the fact that two or more concepts regarded as
equivalent to the user in some context (for example, “title of a

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

book” and “subject of an e-mail” are both names) are represented
differently by the system. Our stylesheet ontology aims to
promote these goals within the context of a heterogeneous
metadata space.

The paper is organized as follows. We begin with a discussion of
the basic notions of the role heterogeneous composition plays in
the visualization of RDF metadata. Next, we review the key
concepts of the XSLT language and describe how they apply to
RDF. We present our prototype Xenon stylesheet ontology that
instantiates these concepts and describe a pattern matching
mechanism that generalizes the corresponding notion from XSLT.
Then, we apply the Xenon stylesheet ontology to define the
concepts of view and lens and describe an example stylesheet that
incorporates these two concepts. Finally, we discuss how our
approach compares to and complements other systems for RDF
presentation.

2. A MODEL FOR COMPOSING RDF
PRESENTATION KNOWLEDGE
As a semantic network representation, RDF makes it easy for
metadata fragments created by independent parties to be
combined together into a cohesive whole. During this process,
resources whose classes were designed separately may become
connected by RDF statements, and similarly the aggregated list of
properties for any given resource may include predicates coined
by many different people. Thus, in creating a presentation system
for RDF, a challenge exists as to how to visualize an arbitrary
resource given the heterogeneity of its description.

There are two extremes to consider. One extreme is that any
possible combination of classes and properties must have
associated with it a user interface that was specifically designed
for it. This setup is common in desktop applications today, such
as in address book systems, because the schema is fixed at the
time of development. It is especially useful when the user
interface must possess a high level of refinement. The flip side is
that, given the distributed nature of the Semantic Web, the space
of possible combinations of classes and properties may be
exponentially prohibitive, and only specific combinations that are
frequently used will likely have specialized interfaces designed for
them.

On the other extreme is a componentized model whereby
presentation knowledge for each class and property is provided
separately and can be assembled incrementally to produce a
presentation for any given combination. This model certainly
scales better given the setup of the Semantic Web, but the
challenge becomes one of ensuring that the components will
“snap together” cleanly when they must be brought to bear to
present any given resource.

We argue for a paradigm that allows both extremes to coexist.
Contributors of presentation knowledge should be permitted to
express user interface constraints at any level of granularity and to
whatever the extent known by the contributor. Such a system is
consistent with RDF’s fine level of granularity, where authors can
assert knowledge about a resource as fine as one statement.

We will refer to such a contribution as a template. Templates
specify how to show some piece of information related to a
resource and consist of two main components: the presentation
content to be displayed, and metadata describing the conditions
under which the template is valid. Presentation content can
incorporate text and graphics, as well as placeholders for

parameterized content such as properties of the displayed resource
(e.g., name, creator, etc.).

When these properties-to-be-displayed point to other resources,
templates can contain placeholders for other templates to supply
that fragment of the presentation. In this way, authors can reuse
presentation knowledge not necessarily created by them. The use
of placeholders and embedded templates also permits a reusable
piece of presentation knowledge to be consolidated in specific
templates and to not be duplicated across multiple templates. Of
course, placeholder usage is not mandatory; it is possible under
this scheme to accommodate completely monolithic templates that
do not change when new presentation information is added.

Placeholders need not be specific about which template to embed.
Instead, templates include metadata that constrain their usage,
such as “made to fit in a small space” or “only applies to
resources of type foo:Foo”, and the placeholder can be set up to
specify templates with certain criteria.

Part of the constraint definition for a template can indicate what
role the template is serving. Some templates might show a
summary of the given resource, while others may only provide
some portion, such as the title or the date (where the definition of
what date to use would depend on the kind of resource). Roles are
important because they free the developer to specify as little or as
much presentation knowledge as desired or available.

This arrangement brings about a sort of template “marketplace”,
whereby a template can advertise its need for another template
that can play a specific role. As a result, multiple templates may
exist for any given set of constraints. This is a good thing—
multiple authors should be allowed to contribute their ideas. Some
templates will be very specific, and others will be more general,
allowing other templates to add in their contributions. Some
templates will present semantically-differing views of the
resource, and others will only change the presentation
superficially like MP3 player skins. Furthermore, we believe that
users should be given the freedom to choose amongst the different
possibilities whenever a placeholder is involved. It is in this
flexibility that true end user customizability of the interface can be
achieved. This idea is discussed further in Section 7.

3. APPLYING THE CORE CONCEPTS OF
XSLT TO RDF
So far we have described a framework for characterizing
presentation knowledge that encourages reuse when applied to the
visualization of heterogeneous datasets. What we have not
described are the nuts-and-bolts details, such as how templates are
implemented and how expressive the template definition language
is. To actually instantiate this framework as a concrete language
that can be used, we look to systems that have been developed
that espouse the core concepts involved. Here we examine
XSLT—a W3C-standardized language for describing
transformations from one XML document to another. Although
the structure of an XSLT program’s input is an XML file and
hence tree-shaped, we have found that the XSLT paradigm for
doing transformation to be applicable to general RDF graphs. In
this section we analyze XSLT to guide the development of a
complete language based on our framework.

XSLT is a Turing universal language with functions, static and
dynamic1 scoping, and functional constructs for implementing
conditional logic and loops. These features let programmers
package commonly-used code for reuse, do complex data
manipulations, and implement other functionality commonly
needed when developing a user interface. Certainly, Turing
universality is a double-edged sword: the downside of many
declarative user interface toolkits is that they are not expressive
enough and must be abandoned in favor of a “full” programming
language for many frequent use cases; yet, when languages are too
expressive, automated analysis for use by WYSIWYG form
designers or optimizing compilers becomes difficult. However,
because XSLT is a functional language, many forms of static
analysis remain possible, and the lack of support for side-effects
and restricted data access mechanisms ensure that XSLT programs
are generally verifiably safe to run, as are most programs that run
within a sandboxed virtual machine2.

XSLT’s support for functions manifests itself in the form of
templates. Like the templates notion discussed in Section 2, XSLT
templates describe a portion of the resulting presentation that is
parameterized by some input node (in the case of XSLT, XML
DOM node, and in RDF’s case, RDF graph node) and can be
restricted for use on specific kinds of nodes. XSLT templates can
also invoke other templates, both directly and by use of a kind of
placeholder known in XSLT as “apply-templates”. Finally, XSLT
templates can also take an arbitrary number of additional
parameters.

Data access in XSLT is achieved through XPath expressions that
allow an XSLT program to navigate the input document and to
extract information from it. What ties XSLT’s notion of data
access to the XML DOM tree model is the fact that XPath is
being used. When XPath is replaced by a graph query language,
such as SPARQL [8] or RDQL [10], we find that the XSLT
template paradigm maps nicely onto the framework delineated in
Section 2: templates produce output fragments with placeholders
that extract data from the RDF graph instead of from an XML
input document.

When a placeholder calls for another template to be embedded to
present a given node, the template whose match pattern most
closely fits the given node is used. Match patterns in XSLT are
described using XPath syntax, but as before, when XPath patterns
are replaced with graph matching patterns, we find that the XSLT
model remains applicable. The main challenge is in defining a
graph matching pattern language whereby patterns can be ordered
by match specificity so that placeholders can identify the “best”
match. We address this problem in the next section.

Templates in XSLT can be assigned to a mode; modes are used to
partition the set of templates defined by an XSLT program and
can be specified in an apply-templates call to filter the set of
templates from which a match can be made. We feel that mode is
just one possible attribute that can be used to restrict the set of
templates, and given the expressive power of RDF, modes can be

1 Only a fixed set of variables such as the current node and current

position are dynamic in XSLT 1.0; in the upcoming XSLT 2.0
specification, the user can define an unlimited number of
dynamically-scoped variables called “tunnel parameters”.

2 Obviously, one thing that cannot be detected, as with Java,
JavaScript, and other Turing universal languages, is whether the
code will terminate.

replaced by general RDF queries for isolating a group of
templates.

4. XENON PROTOTYPE
IMPLEMENTATION
In the previous section we asserted that the XSLT model can be
effectively reapplied to RDF to implement the stylesheet
framework described in Section 2. The language we have built to
implement this modified XSLT model is called Xenon and is
described in this section. In addition to replacing XPath with RDF
analogs, we have also made some changes to the language that
help it to better act as a medium for recording presentation
knowledge in a Semantic Web environment.

The Xenon stylesheet language is specified as an RDF ontology.
In other words, the role the abstract syntax tree (AST) usually
plays in functional languages such as XSLT or Lisp is played by
an RDF fragment. The Xenon RDF-based AST is actually a
directed acyclic graph (DAG). By representing an AST in RDF,
we have therefore drawn a correspondence between the terms
“language” and “ontology”: a Xenon stylesheet is RDF written
with respect to the Xenon ontology.

There are several benefits to using RDF to represent a Xenon
stylesheet. First, stylesheet information should be as easily
distributable and universal as schema or ontology information,
and using an RDF representation removes most of the syntactic
barriers to achieving these goals. Second, there is no need to force
users to adopt a specialized syntax; existing syntaxes such as
Notation3 and RDF/XML can be chosen from. Third, RDF has a
built-in notion of what it means to merge two fragments of RDF,
and so the semantics of combining two Xenon stylesheets is
therefore clearly defined.

Xenon, like XSLT3, is a pure functional language with no side
effects. The basic element in Xenon code therefore is the
expression, and as is typical in functional languages, expressions
are designed to be arbitrarily nested. Expressions are manifested
in the form of resources, whose rdf:type assertion dictates the type
of expression being recorded. Some of an expression’s properties
point to other expressions, just as an AST node has children nodes
that represent its arguments. There are three kinds of expressions:
built-in expressions (analogous to special forms in Scheme or
Lisp), native expressions, and user-defined template calls.

We describe six basic expressions built into Xenon. First, the
xe:Let expression binds a variable name to another expression;
this variable name is statically scoped (cf. xsl:variable). The
corresponding xe:Identifier expression evaluates to the value
named by the given variable name. xe:With is like xe:Let, except
that the variable name is dynamically scoped (dynamic scoping is
used to support cascading properties, such as font or background
color). xe:If evaluates to the first consequent if the condition
evaluates to true; otherwise, it evaluates to the second consequent
(cf. xsl:choose). xe:ForEach iterates over a list of objects and
concatenates the values that result from evaluating the body
expression with the loop variable bound to the current object (cf.
xsl:for-each). Finally, xe:Resource allows a URI immediate value
to be expressed.

3 XSLT 1.0 is a pure functional language when the generate-id()

function is never used.

Native expressions provide access to functionality that is most
easily implemented by the underlying system but does not require
new variable bindings to be introduced. We highlight two such
expressions here. xe:Select encapsulates a SPARQL query and
returns a list of results. xe:ApplyTemplates takes a resource and a
SPARQL query constraining the list of templates over which to be
searched and returns the content created by that template.

In addition, native expressions perform another basic function: the
instantiation of content. Unlike XSLT, where arbitrary XML
result tree fragments can be instantiated, Xenon abstracts the
production of result content into a library of native expressions.
Another way to think about this is that Xenon requires the output
content to conform to a schema that is known in advance. In our
initial implementation, we have chosen to use a slightly-modified
version of the XHTML tag set to name these native expressions.

There are two reasons for our decision to abstract content
generation in terms of native templates. First, it is not necessary to
define a general RDF-to-RDF transformation language: that is the
whole point of an inference engine. Second, our representation
allows us to create both markup-based (e.g., XHTML) and
widget-based versions from the same stylesheet. This is because
the Xenon representation allows a stylesheet processor to
instantiate widgets straight from the native expressions, much as
is done in systems such as Glade for GTK [12]. Work on such an
implementation is in progress.

Finally, a user-defined template call expression is a resource
whose type is a class of type xe:Template. This is the mechanism
by which new abstractions can be created in a stylesheet. We have
chosen to derive xe:Template from rdfs:Class in order to take
advantage of RDF Schema in specifying the parameters that a
template can accept: the parameters to an instance of an
xe:Template are simply rdf:Property’s whose domain is the
xe:Template. In other words, to instantiate a template x, where x
has rdf:type xe:Template, create a resource whose rdf:type is x.

Templates, being defined in RDF, can have additional metadata
associated with them. We have predefined the xe:role property as
one derivative of the original xsl:mode attribute (other derivative
properties will be introduced later). Other properties, such as
those from the Dublin Core ontology [11], can be used for
documentation purposes.

Additionally, match patterns for templates are defined using the
xe:matchPattern property, which points to an rdf:List of
xe:MatchPattern resources. An xe:MatchPattern has two elements:
a SPARQL query, and an integer score value (cf. xsl:priority). The
Xenon engine, when evaluating a xe:ApplyTemplates expression,
will walk the list of match patterns for a candidate template and
determine whether the target resource, when substituted into the
SPARQL query, produces a graph fragment that is a subgraph of
the RDF store in use. For those match patterns that are satisfied,
the corresponding score values are added up, and a template
whose cumulative score is the highest is selected.

5. HIGHER-LEVEL ABSTRACTIONS:
LENSES AND VIEWS
The Xenon ontology provides a generic framework for describing
how a resource may be transformed into a presentation as well as
a template matching system for supporting heterogeneous
composition. Our development of the Haystack system has
elucidated some higher-level abstractions built on top of
Haystack’s custom template matching system that we have found

to be useful for building Semantic Web user interfaces. The two
key concepts from this work are lenses and views. In this section,
we elucidate these concepts in terms of the Xenon framework and
describe how they can be applied to build real-world user
interfaces.

5.1 Lenses
A lens is a component that shows information from a (possibly
singleton) set of properties of a resource that makes sense being
shown together [1]. Examples of lenses include a name lens,
which shows the human-readable name of a resource, and a
summary lens, which shows the set of key properties for a given
resource. Lenses are often used to abstract a general concept
across multiple classes. For example, the notion of “name” makes
sense for both books and people, although the precise predicate or
other means of representation used might be radically different.
Using match patterns, we can define two lens templates that play
the same xe:role—xe:nameLens.

In Xenon, we can model this phenomenon by creating lens
templates. Lens templates have type xe:LensTemplate (which
derives from xe:Template) and are assumed to only take one
parameter: xe:target (whereas general templates can take an
arbitrary number of parameters4). Properties, such as the size class
of the output of the lens template, can be specified in RDF; in
particular, we predefine the xe:size property to allow a lens
template to be associated with a resource that identifies a size
class, such as xe:fullScreen, xe:oneLine, xe:thumbnail, etc. As
with many Semantic Web concepts, these size class resources (or
other possible property values of lens templates) then act as a
contract between the lens author and lens consumer, whereby
reuse of a resource such as xe:oneLine can be relied upon to
convey the semantics intended by the author of the resource, and
new resources referring to different semantics can be coined at
will.

5.2 Views
Lens can be used to show selected pieces of information regarding
a resource. However, if one wants to simply “show” a resource
and delegate the responsibility of deciding which selected pieces
to show, a developer can embed a special kind of lens called a
view. In Haystack, a view is defined to be a component that
generates a region on the screen that represents a given resource
[9]. To motivate our definition of view, consider the interface
exposed by a typical GUI e-mail client. Person resources are
found throughout such an application: in the From field in an e-
mail editor, under the From column in the inbox listing, as a row
in the address book listing, as a standalone window showing an
address book entry, etc. Similarly, when a calendar resource is
shown as a monthly calendar instead of as a daily calendar, the
user is invoking different views to visualize that calendar
resource. In the Haystack paradigm, these widgets that display
representations of resources are all considered views of those
resources.

It is useful to embed views whenever the decision of what is a
“representative” presentation should be delegated to others. For
example, when a list of resources need to be displayed, instead of

4 Because Xenon templates play the same role as functions in

other functional languages, a utility function that takes multiple
parameters would be an example of a template that might not
take a single parameter.

having the designer of the list template decide the best lens for or
best way to present each element of the list, he or she can insert
placeholders for views of a specific size for each resource on the
list to be inserted. Views are also often embedded within other
views or lenses. If a lens needs to show a list of recipients for an
e-mail message, it can embed icon-sized views of people, mailing
list, and group resources, thereby shifting the responsibility of
deciding the “canonical” visualization of these resources, given
the size constraints, to others.

Developers who are designing lenses can designate a lens
template as being a view template if he or she believes, given the
size and/or other constraint metadata defined for the lens
template, that the lens produces a presentation that is likely to be
representative, in the user’s eyes, of the resource being shown.
For example, if one creates an icon tile-sized lens of a calendar
that only shows the name of the owner of the calendar, this lens
would make a poor icon tile-sized view, because if a user is
looking at a folder of resources as a series of icon tiles, each
resource in the folder would be represented by an icon tile-sized
view, and it is unlikely that the user would recognize a line of text
with only a person’s name on it as being a calendar.

One common way to build a view template is to consider what the
key aspects of a resource are and to embed lenses to display them.
The default icon tile-sized view template may simply embed
placeholders for an icon lens and a name lens, as well as possibly
some generally-useful summary information such as a date lens or
a lens that indicates the resource’s type. (This is the arrangement
typically seen in a file system browser such as Windows
Explorer.)

In Xenon, we can model view templates as templates with type
xe:ViewTemplate (which derives from xe:LensTemplate) and role
xe:view and that are assumed to only take one xe:target parameter.
All of the other properties used to characterize lens templates
apply equally to view templates.

6. EXAMPLE: A CATALOG BROWSER
To illustrate how an application can be built using lenses and
views, we have constructed an example that enables a user to
browse a heterogeneous product catalog listing. Our example is
based on the following sample data, given in Notation3 format:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .
@prefix xe:
<http://haystack.lcs.mit.edu/schemata/xenon#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix sample: <http://tempuri.org/sampledata#> .
@prefix schema: <http://tempuri.org/sampleschema#>
.
@prefix : <http://tempuri.org/samplestylesheet#> .

sample:collection
 a schema:Collection ;
 schema:member sample:camry ;
 schema:member sample:windows95 ;
 schema:member sample:www2004 .

sample:camry
 a schema:Car ;
 schema:name "Toyota Camry" ;
 schema:manufacturer "Toyota" ;
 schema:model "2003" .

sample:windows95
 a schema:Software ;

 schema:name "Windows 95" ;
 schema:creator "Microsoft" ;
 schema:version "1995" .

sample:www2004
 a schema:Book ;
 dc:title "Proceedings of the 13th
International World Wide Web Conference" ;
 dc:creator "ACM" ;
 dc:date "2004" .

sample:joesBooks
 a schema:BookStore ;
 rdfs:label "Joe's Books" ;
 schema:sells sample:windows95 ;
 schema:sells sample:www2004 .

sample:fBay
 a schema:AuctionSite ;
 rdfs:label "fBay" ;
 schema:sells sample:windows95 ;
 schema:sells sample:camry .

The presentation we are aiming to produce from this data looks
like the following (given a target representation of HTML to be
shown in a Web browser):

We have intentionally left out column headers, excessive
formatting, and other extraneous elements from our example to
better illustrate the core concepts at play. The columns here list
the year a product was made available, a list of the stores at which
the product can be bought, the name of the product, and the
creator of the product. Note that the schemas used in the sample
data for representing cars uses different RDF properties for
naming similar attributes than does the schema for books.

6.1.1 Creating a Simple View Template
The second column shows a listing of the stores that carry the
product named in that row. Therefore, it is likely that the decision
of how to represent the store resources in those listings should be
delegated to a view. We use the xe:inline size class to refer to the
fact that the view should be a piece of text suitable for insertion
into a paragraph. Given the size constraints, a reasonable
presentation is one in which only the title is shown. The following
code defines such an inline view template that embeds the name
lens:
xe:target
 rdfs:domain :DefaultInlineView

:DefaultInlineView
 a xe:ViewTemplate ;
 xe:role xe:view ;
 xe:size xe:inline ;
 xe:match () ; # Matches everything
 xe:body [
 a xe:ApplyTemplates ;
 xe:select [
 a xe:Identifier ;
 xe:name xe:target

] ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE (?TARGET xe:role
xe:nameLens)"
]

Two observations should be pointed out at this point. First, the
match pattern is empty, so the default match score of 1 will apply.
If other, more specific templates are created in this size class, then
they must produce match scores greater than 1. As is the case in
many domains, we believe conventions will develop to specify the
scales of match scores for specific roles.

Additionally, our SPARQL queries assume that only one variable,
?TARGET, is being queried for.5

6.1.2 Creating a Simple Lens Template
To illustrate the process of defining a lens template, we will create
a default name lens that uses the rdfs:label property by default to
extract the name of a resource:
xe:target
 rdfs:domain :DefaultNameLens

:DefaultNameLens
 a xe:LensTemplate ;
 xe:role xe:nameLens ;
 xe:size xe:inline ;
 xe:match () ; # Matches everything
 xe:body [
 a xhtml:Text ;
 xe:body [
 a xe:Select ;
 xe:singleResult "true" ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?TARGET WHERE ($xe:target dc:title
?TARGET)"
]
 }
}

In this example, one notes that the SPARQL query can use a $
prefix to refer to variables currently in scope, and SPARQL
queries can be annotated with the xe:singleResult parameter to
instruct the query engine to only return one result.

6.1.3 Creating a Specialized Lens Template
The columns in the listing are all showing different properties of
the resources represented by the rows of the table, but as we
pointed out earlier, the resources do not all share exactly the same
schematic representation for these properties. We have therefore
constructed lenses to abstract away these differences in underlying
representation.

To define the “year lens”, we need to create lens templates for
each of the possible underlying representations of “year”. These
templates are distinguished by their match patterns. Here is the
definition for the year lens for the schema:Car class:
xe:target
 rdfs:domain :CarYearLens

5 Because the SPARQL specification is currently a draft, we have

adopted a syntactic variation on the SPARQL syntax with our
internal implementation and will update it to conform to the
final syntax when it is released. The latest SPARQL syntax has
been incorporated into this paper for ease of readability.

:CarYearLens
 a xe:LensTemplate ;
 xe:role :yearLens ;
 xe:size xe:inline ;
 xe:match (
 [a xe:MatchPattern ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> SELECT ?TARGET WHERE ($xe:target
rdf:type schema:Car)" ;
 xe:score "2"
]

) ;
 xe:body [
 a xhtml:Text ;
 xe:body [
 a xe:Select ;
 xe:singleResult "true" ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?TARGET WHERE ($xe:target schema:model
?TARGET)"
]
 }
}

6.1.4 The Sold-by Lens
The lens that shows the list of stores that sell the given resource is
different from the ones we have seen so far because it embeds a
list of resources. The sold-by lens template uses an xe:ForEach to
iterate over the stores that carry the product, wraps each in an
 tag, and uses an xe:ApplyTemplates to embed the
appropriate inline view template:
xe:target
 rdfs:domain :DefaultSoldByLens

:DefaultSoldByLens
 xe:role sample:soldByLens ;
 xe:match () ; # Matches everything
 xe:body [
 a xhtml:UL ;
 xe:body [
 a xe:ForEach ;
 xe:select [
 a xe:Select ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE (?TARGET schema:sells
?xe:target)"
] ;
 xe:loopVar :x ;
 xe:body [
 a xhtml:LI ;
 xe:body [
 a xe:ApplyTemplates ;
 xe:select [
 a xe:Identifier ;
 xe:name :x
] ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE (?TARGET xe:size xe:inline)
(?TARGET xe:role xe:view)"
]
]
]
]

6.1.5 Putting it all together
Finally we can create a view template for the sample:collection
resource. First, here is a top level template for driving the
example:
sample:CollectionExampleDriver
 a xe:Template ;
 xe:body [
 a xhtml:P ;
 xe:body [
 a xe:With ;
 xe:name :lensList ;
 xe:select [
 a xe:Select ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX : <http://tempuri.org/samplestylesheet#>
SELECT ?TARGET WHERE (:lenses schema:member
?TARGET)"
] ;
 xe:body [
 a :CollectionView ;
 xe:target [
 a xe:Resource ;
 xe:resource sample:collection
]
]
]
]

sample:lenses
 :member xe:nameLens ;
 :member xe:creatorLens ;
 :member sample:yearLens ;
 :member sample:soldByLens

The template iterates over the members of the collection and
embeds a second, helper template that in turn generates a table
row and embeds the appropriate lenses within <TD> tags. Note
the use of the dynamically-scoped variable, defined in the driver
code, for passing in the list of lenses. Because view templates are
normally invoked via xe:ApplyTemplates, which only accepts one
parameter, using dynamic scoping permits other parameters to be
passed through (cf. xsl:with-param in xsl:apply-templates).

xe:target
 rdfs:domain :CollectionView

:CollectionView
 a xe:ViewTemplate ;
 xe:match (
 [a xe:MatchPattern ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> SELECT ?TARGET WHERE ($xe:target
rdf:type schema:Collection)" ;
 xe:score "2"
]

) ;
 xe:body [
 a xhtml:TABLE ;
 xe:body [
 a xe:ForEach ;
 xe:select [
 a xe:Select ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE ($xe:target schema:member
?TARGET)"
 } ;
 xe:loopVar :x ;
 xe:body [
 a xhtml:TR ;
 xe:body [

 a :Helper ;
xe:target [

a xe:Identifier ;
xe:name :x

]
]
]
]
]

xe:target
 rdfs:domain :Helper

:Helper
 a xe:Template ;
 xe:body [
 a xe:ForEach ;
 xe:select [
 a xe:Identifier ;
 xe:name :lensList
 } ;
 xe:loopVar :x ;
 xe:body [
 a xhtml:TD ;
 xe:body [
 a xe:ApplyTemplates ;
 xe:select [
 a xe:Identifier ;
 xe:name xe:target
] ;
 xe:filter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX : <http://tempuri.org/samplestylesheet#>
SELECT ?TARGET WHERE (?TARGET xe:role $:x)"
]
]
]

7. DISCUSSION AND RELATED WORK
There are a number of benefits that arise from the use of a
functional Turing universal stylesheet ontology such as Xenon.
First, it is easy to support abstractions that permit presentation
knowledge to be described to the extent to which a developer, a
designer, or some other contributor wishes to specify. We have
described one possible abstraction, views and lenses, that has
been shown to have broad applicability in Haystack across
domains as varied as media players, e-mail, and bioinformatics
[1], but other abstractions are of course possible.

One theme that is prevalent is the notion that code and data are
not heavily distinguished, a notion reminiscent of languages such
as Lisp. In the catalog browser example from Section 6, one sees
that some pieces of presentation metadata seem more like JSP-
style HTML generation code (e.g., :CollectionView), whereas
others are more like fragments of configuration data meant to act
as parameters to other templates (e.g., sample:lenses). Because
templates use RDF Schema to describe their parameters, both
“code” and “data” have the same form and differ only by the
complexity of the domain they are describing.

As a result, the stylesheet designer, in creating a presentation
system, is given a lot of freedom to split the user interface
specification between the “static code library”—the portion that
stays fixed—and “customizations”—the part that is provided by
people contributing ontology-specific adjustments to the system.
On one extreme, contributors provide only a “bare-bones
specification” (e.g., a list of important properties as a property of
the rdfs:Class) that is consumed by a default view template that
matches against all resources and locates the important properties
using a query against the class. On the other extreme, contributors

provide stylesheet templates that use the full expressive power of
the functional language, including conditional code, loops,
placeholders for other templates, etc. An example of a paradigm
in the middle is one in which templates simply call other
templates with static parameters such as the salient properties for
each class:
:PersonViewTemplate

a xe:ViewTemplate ;
xe:body [

a :DefaultViewTemplate ;
:importantProperties (:name :address) ;

Pass the target resource through
xe:target [

a xe:Identifier ; xe:name xe:target
]

]
We believe this level of flexibility allows developers to produce
reusable libraries of code that implement a variety of different
interface styles. Furthermore, our stylesheet mechanism enables
systems that rigidly support only one of the extremes given above
to gradually move to a more general paradigm of template-based
customization. For example, the Longwell faceted metadata
browser [3] allows users to visualize a resource that is in focus by
means of a customizable list of properties. Users can also pivot to
other resources that are related to the current resource by a shared
property (these pivot points are called facets). The specifications
of which properties to display and what facets are available are
defined against a custom RDF schema. Using the “bare-bones”
approach, one could construct a stylesheet that read these
specifications and produced screens similar to those of Longwell.
Other automatically-generated, form-based RDF user interfaces,
such as those produced by Protégé [13] and SEAL [2], could be
reproduced with a similar approach. However, by adding view
templates that overrode the default templates, one could begin to
gradually introduce higher levels of customization than those
implied by the custom RDF schema-driven configuration
metadata data.

One difference between Xenon and systems like Protégé is that
Xenon only attacks the problem of visualizing existing RDF
content. We are also interested in the problem of interfaces that
record RDF, as was discussed in a previous paper [9]. The
Haystack browser supports RDF authoring, but we are looking for
ways to add authoring support into Xenon.

8. REFERENCES
[1] Quan, D. and Karger, D. How to Make a Semantic Web

Browser. Proceedings of WWW 2004.

[2] Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y.
SEAL: a framework for developing SEmantic PortALs.
Proceedings of the International Conference on Knowledge
Capture October 2001.

[3] The Simile Longwell Project. http://simile.mit.edu/longwell/.

[4] XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt.

[5] XSL Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/xslt20/.

[6] Quan, D., Huynh, D., and Karger, D. Haystack: A Platform
for Authoring End User Semantic Web Applications.
Proceedings of ISWC 2003.

[7] Berners-Lee, T. Primer: Getting into RDF & Semantic Web
using N3. http://www.w3.org/2000/10/swap/Primer.html.

[8] SPARQL Query Language for RDF.
http://www.w3.org/TR/2004/WD-rdf-sparql-query-
20041012/.

[9] Quan, D., Karger, D., and Huynh, D. RDF Authoring
Environments for End Users. Proceedings of Semantic Web
Foundations and Application Technologies 2003.

[10] RDQL—A Query Language for RDF.
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/.

[11] Dublin Core Metadata Initiative. http://dublincore.org/.

[12] Glade GTK+ User Interface Builder. http://glade.gnome.org/.

[13] Noy, N., Sintek, M., Decker, S., Crubezy, M., Ferguson, R.,
and Musen, M. Creating Semantic Web Contents with
Protege-2000. IEEE Intelligent Systems 16 (2), 2001, pp. 60-
71.

