Xenon: An RDF Stylesheet Ontology

Dennis Quan

IBM T. J. Watson Research Center
1 Rogers Street
Cambridge, MA 02142 USA
+1 617 693 4612

dennisg@us.ibm.com

ABSTRACT

Bringing information to bear from diverse sourcesautomate
tedious processes for the user is a key teneteoSd#mantic Web
vision. In previous papers we argued that visuajzi
semantically-connected corpora is not only a prerample of
one of these processes but is also a critical pmlithat must be
solved to gain acceptance from the broader commasitto the
benefits of RDF. In this paper we elaborate ongbecific topic
of ontologies for describing how resources shod@giesented to
the user. We propose the creation of an RDF stgkidanguage,
reusing many of the key ideas of the XSL Transfdions
language (XSLT), but incorporating the requiremtrat when
multiple ontologies are used in the descriptiom @ésource to be
presented, multiple stylesheets, potentially fraffecent authors,
will need to be composed. This notion of enablietgrogeneous
composition motivates the definition of our basic building tio
concepts ofiew andlens. In addition to abstractly characterizing
our notion of an RDF stylesheet, we also descrilieconcrete
instantiation of these ideas in the Xenon ontoldginally, we
give a concrete example illustrating how our sty
mechanisms enable developers to easily produce HotL-
based and custom rich client-based browsers fardgeneous
datasets.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features -abstract data types, polymorphism, control structures.

General Terms
Human Factors, Languages.

Keywords
Stylesheet, XSLT, RDF, Semantic Web.

1. INTRODUCTION

The Semantic Web vision proposes enabling radicedly forms
of automation from multiple information sources riggimade
compatible with one another through a common remtasion—
RDF. RDF Schema and OWL provide ways of describiogy the
concepts in different corpora with different schemelate to one
another. When a Semantic Web agent encounters ttata
invokes terms from multiple ontologies, it can u€AVL
definitions to intelligently decide how to deal ithis data. The

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.

David R. Karger

MIT CSAIL
32 Vassar Street
Cambridge, MA 02139 USA
+1 617 258 6167

karger@mit.edu

key concept from OWL we wish to highlight feterogeneous
composition—the notion that the knowledge embedded in OWL
ontologies written by multiple parties can be rgadombined to
facilitate making inferences from across informatémrpora.

We argued in a previous paper [1] that providirfgser agent” is
a fundamental prerequisite to the proliferationtlod Semantic
Web. By user agent we are referring to a Semangb Wrowser,
which, like previous user agents (e.g., the Webwber), is
responsible for allowing users to navigate infoioratcorpora
and consequently instilling in users the abilityeixperience the
power of information integration first hand.

Like other Semantic Web agents, the Semantic Wetyder must
deal with the metadata heterogeneity that is battrength and a
source of complexity for the Semantic Web. In owevjpus
paper, we defined the conceptlefis—a component that extracts
and displays a set of related information abouteaource.
Building browsing interfaces around lenses enablisited form
of heterogeneous composition because lenses cateflied to
work across multiple classes and lenses from melépthors can
be combined at runtime to highlight information rfradifferent
ontologies.

In this paper we take a step back from lenses soribe a more
general mechanism for enabling heterogeneous catigmo$or
user agents. We term this mechanism a “styleshetelcgy” in
analogy to the use of stylesheets on the Web anXN¥tL as a
way to abstract presentation from content. If weuase that
stylesheets were deemed useful in the HTML and Xdditexts,
we claim that RDF possesses an even stronger need f
stylesheets. HTML (and to some degree XML as welien the
schema in play is simple) is designed to yield houmedable
content in a browser, whereas datasets that utlieeexpressive
power of RDF are rarely human-readable—regardlesghef
syntax used. Even when RDF is expressed in Notat&ymtax
[7], one finds it challenging to discern the cortedcgraph of
relationships embedded in RDF content to the usssugh a
straightforward textual syntax.

Our goal is to allow the creation of “intuitive” essinterfaces that
are specialized to specific kinds of resources #mdspecific
situations. For example, resources shown on threescshould be
properly identified by some human-readable appefatand
almost never by a URI. Rarely are all the propsrtiEa resource
relevant in a given context; they should be proptitered so as
to not overload the user. The properties that elevant need to
be laid out and ordered in a sensible fashion ooraking to an
accepted convention. Additionally, the user shouwldt be
impeded by the fact that two or more concepts ceghras
equivalent to the user in some context (for examfilde of a

book” and “subject of an e-mail” are both nameg) r@presented
differently by the system. Our stylesheet ontologiyns to
promote these goals within the context of a hetemegus
metadata space.

The paper is organized as follows. We begin witlisgussion of
the basic notions of the role heterogeneous coripogplays in

the visualization of RDF metadata. Next, we revidve key
concepts of the XSLT language and describe how #pply to

RDF. We present our prototype Xenon stylesheetlogyothat

instantiates these concepts and describe a pattetching
mechanism that generalizes the corresponding nérbom XSLT.

Then, we apply the Xenon stylesheet ontology toindethe
concepts of view and lens and describe an exanykskeet that
incorporates these two concepts. Finally, we dsdusw our
approach compares to and complements other sydteniRDF

presentation.

2. AMODEL FOR COMPOSING RDF
PRESENTATION KNOWLEDGE

As a semantic network representation, RDF make=sadly for
metadata fragments created by independent parteshe
combined together into a cohesive whole. During thiocess,
resources whose classes were designed separatglypename
connected by RDF statements, and similarly theexgded list of
properties for any given resource may include magds coined
by many different people. Thus, in creating a pmest@on system
for RDF, a challenge exists as to how to visualrearbitrary
resource given the heterogeneity of its description

There are two extremes to consider. One extreméhas any

possible combination of classes and properties nheste

associated with it a user interface that was sigatlif designed

for it. This setup is common in desktop applicasidaday, such
as in address book systems, because the scherxadsat the

time of development. It is especially useful where tuser

interface must possess a high level of refinememe. flip side is

that, given the distributed nature of the Semawteb, the space
of possible combinations of classes and propertieg/ be

exponentially prohibitive, and only specific comaiions that are
frequently used will likely have specialized insaés designed for
them.

On the other extreme is a componentized model \alyere
presentation knowledge for each class and properprovided
separately and can be assembled incrementally édupe a
presentation for any given combination. This modettainly
scales better given the setup of the Semantic Ve, the
challenge becomes one of ensuring that the comp®neiti
“snap together” cleanly when they must be broughbear to
present any given resource.

We argue for a paradigm that allows both extrencesdexist.
Contributors of presentation knowledge should bemgited to
express user interface constraints at any levgtafularity and to
whatever the extent known by the contributor. Sacéystem is
consistent with RDF’s fine level of granularity, @fe authors can
assert knowledge about a resource as fine as atesrsnt.

We will refer to such a contribution astemplate. Templates
specify how to show some piece of information edato a
resource and consist of two main components: tlesgmtation
content to be displayed, and metadata describiagctimditions
under which the template is valid. Presentation temin can
incorporate text and graphics, as well placeholders for

parameterized content such as properties of thpagisd resource
(e.g., name, creator, etc.).

When these properties-to-be-displayed point to rotksources,
templates can contain placeholders for other tet@pltd supply
that fragment of the presentation. In this wayhatg can reuse
presentation knowledge not necessarily createchémnt The use
of placeholders and embedded templates also peamitsisable
piece of presentation knowledge to be consolidétedpecific

templates and to not be duplicated across multgieplates. Of
course, placeholder usage is not mandatory; ibssiple under
this scheme to accommodate completely monolithiptates that
do not change when new presentation informati@uded.

Placeholders need not be specific about which taetapb embed.
Instead, templates include metadata that constfair usage,
such as “made to fit in a small space” or “only leg®p to

resources of type foo:Foo”, and the placeholder marset up to
specify templates with certain criteria.

Part of the constraint definition for a templaten ¢adicate what
role the template is serving. Some templates migw a
summary of the given resource, while others may qmbvide

some portion, such as the title or the date (wttezedefinition of

what date to use would depend on the kind of rem)uRoles are
important because they free the developer to gpasilfittle or as
much presentation knowledge as desired or available

This arrangement brings about a sort of templatarketplace”,
whereby a template can advertise its need for ana#mplate
that can play a specific role. As a result, mudtiptmplates may
exist for any given set of constraints. This is @d) thing—
multiple authors should be allowed to contributeitideas. Some
templates will be very specific, and others will inere general,
allowing other templates to add in their contribn8. Some
templates will present semantically-differing viewsf the
resource, and others will only change the presentat
superficially like MP3 player skins. Furthermoreg Welieve that
users should be given the freedom to choose amtmgslifferent
possibilities whenever a placeholder is involved.isl in this
flexibility that true end user customizability dfet interface can be
achieved. This idea is discussed further in Section

3. APPLYING THE CORE CONCEPTSOF
XSLT TO RDF

So far we have described a framework for charaiteyi
presentation knowledge that encourages reuse wipgiea to the
visualization of heterogeneous datasets. What wee haot

described are the nuts-and-bolts details, suclvagémplates are
implemented and how expressive the template disimianguage
is. To actually instantiate this framework as aarete language
that can be used, we look to systems that have teeeloped
that espouse the core concepts involved. Here wamiee

XSLT—a Wa3C-standardized language for describing
transformations from one XML document to anothelthdugh
the structure of an XSLT program’s input is an XMle and
hence tree-shaped, we have found that the XSLTdgarafor
doing transformation to be applicable to generaFRipaphs. In
this section we analyze XSLT to guide the develapmz a
complete language based on our framework.

XSLT is a Turing universal language with functiossatic and
dynami¢ scoping, and functional constructs for implememtin
conditional logic and loops. These features letgmammers

package commonly-used code for reuse, do complea da

manipulations, and implement other functionalitymeoonly
needed when developing a user interface. Certaifilysing
universality is a double-edged sword: the downsidemany
declarative user interface toolkits is that theg aot expressive
enough and must be abandoned in favor of a “fuifgpamming
language for many frequent use cases; yet, wheuéges are too
expressive, automated analysis for use by WYSIWYSBNf
designers or optimizing compilers becomes difficiiowever,
because XSLT is a functional language, many formstatic
analysis remain possible, and the lack of suppmrside-effects
and restricted data access mechanisms ensure $hdt programs
are generally verifiably safe to run, as are mesgmms that run
within a sandboxed virtual machfe

XSLT's support for functions manifests itself inettfform of
templates. Like the templates notion discussecsti® 2, XSLT
templates describe a portion of the resulting preg®n that is
parameterized by some input node (in the case d&fTXXML
DOM node, and in RDF's case, RDF graph node) and b
restricted for use on specific kinds of nodes. XSefmplates can
also invoke other templates, both directly and bg af a kind of
placeholder known in XSLT as “apply-templates”. &ip, XSLT
templates can also take an arbitrary number of tiaai
parameters.

Data access in XSLT is achieved through XPath egwas that
allow an XSLT program to navigate the input docutmemnd to
extract information from it. What ties XSLT’s notioof data
access to the XML DOM tree model is the fact thd&a¥ is
being used. When XPath is replaced by a graph daeguage,
such as SPARQL [8] or RDQL [10], we find that theSIXT

template paradigm maps nicely onto the framewotkeéated in
Section 2: templates produce output fragments pliticeholders
that extract data from the RDF graph instead offran XML

input document.

When a placeholder calls for another template terhbedded to
present a given node, the template whose matclkerpathost
closely fits the given node is used. Match pattémnXSLT are

described using XPath syntax, but as before, wheatbX patterns
are replaced with graph matching patterns, we tiirad the XSLT
model remains applicable. The main challenge isléfining a

graph matching pattern language whereby pattemmbeardered
by match specificity so that placeholders can idethe “best”

match. We address this problem in the next section.

Templates in XSLT can be assigned tmae; modes are used to
partition the set of templates defined by an XSlrégoam and
can be specified in an apply-templates call teefilthe set of
templates from which a match can be made. We Ifetlrhode is
just one possible attribute that can be used twmiceshe set of
templates, and given the expressive power of RDitaw can be

1 Only a fixed set of variables such as the cumente and current
position are dynamic in XSLT 1.0; in the upcomin§LX 2.0
specification, the user can define an unlimited bemof
dynamically-scoped variables called “tunnel paramsst

2 Obviously, one thing that cannot be detected, #h dava,
JavaScript, and other Turing universal languageshiether the
code will terminate.

replaced by general RDF queries for isolating auproof
templates.

4. XENON PROTOTYPE
IMPLEMENTATION

In the previous section we asserted that the XSibt@ehcan be
effectively reapplied to RDF to implement the styleet
framework described in Section 2. The language s tbuilt to
implement this modified XSLT model is called Xenand is
described in this section. In addition to replacit®ath with RDF
analogs, we have also made some changes to thealgmdhat
help it to better act as a medium for recordingsentation
knowledge in a Semantic Web environment.

The Xenon stylesheet language is specified as af &iology.
In other words, the role the abstract syntax tr&8T(usually
plays in functional languages such as XSLT or lissplayed by
an RDF fragment. The Xenon RDF-based AST is agtuall
directed acyclic graph (DAG). By representing anTAS RDF,
we have therefore drawn a correspondence betweertetins
“language” and “ontology”: a Xenon stylesheet is R@ritten
with respect to the Xenon ontology.

There are several benefits to using RDF to repteaeKenon
stylesheet. First, stylesheet information should d® easily
distributable and universal as schema or ontologgrination,
and using an RDF representation removes most ofyheactic
barriers to achieving these goals. Second, there izeed to force
users to adopt a specialized syntax; existing sgstasuch as
Notation3 and RDF/XML can be chosen from. Third, RbBas a
built-in notion of what it means to merge two fragmts of RDF,
and so the semantics of combining two Xenon stgesh is
therefore clearly defined.

Xenon, like XSLP, is a pure functional language with no side
effects. The basic element in Xenon code therefisrethe

expression, and as is typical in functional langsagxpressions
are designed to be arbitrarily nested. Expressémasmanifested
in the form of resources, whose rdf:type asseudictates the type
of expression being recorded. Some of an expresspraperties
point to other expressions, just as an AST nodehiédren nodes
that represent its arguments. There are three kihdgpressions:
built-in expressions (analogous to special formsStheme or
Lisp), native expressions, and user-defined teraplalls.

We describe six basic expressions built into XernBinst, the
xe:Let expression binds a variable name to anotxeression;
this variable name is statically scoped (cf. xsiatsle). The
corresponding xe:ldentifier expression evaluatestite value
named by the given variable name. xe:With is likeLrt, except
that the variable name is dynamically scoped (dyoatoping is
used to support cascading properties, such asofopackground
color). xe:lf evaluates to the first consequenthié condition
evaluates to true; otherwise, it evaluates to #eisd consequent
(cf. xsl:choose). xe:ForEach iterates over a listobjects and
concatenates the values that result from evaluatirey body
expression with the loop variable bound to the entrobject (cf.
xsl:for-each). Finally, xe:Resource allows a URmiediate value
to be expressed.

3 XSLT 1.0 is a pure functional language when theegate-id()
function is never used.

Native expressions provide access to functiondhgt is most
easily implemented by the underlying system butsduoa require
new variable bindings to be introduced. We highligho such
expressions here. xe:Select encapsulates a SPARGLy gnd
returns a list of results. xe:ApplyTemplates takeesource and a
SPARQL query constraining the list of templatesravkich to be
searched and returns the content created by thatadte.

In addition, native expressions perform anotheiddfasiction: the
instantiation of content. Unlike XSLT, where arbiy XML
result tree fragments can be instantiated, Xenostradis the
production of result content into a library of watiexpressions.
Another way to think about this is that Xenon regsithe output
content to conform to a schema that is known inaade. In our
initial implementation, we have chosen to use ghslly-modified
version of the XHTML tag set to name these natixgressions.

There are two reasons for our decision to abstracttent
generation in terms of native templates. Fird§ itot necessary to
define a general RDF-to-RDF transformation langu#us is the
whole point of an inference engine. Second, ouresgntation
allows us to create both markup-based (e.g., XHTMIod
widget-based versions from the same stylesheet iEhbecause
the Xenon representation allows a stylesheet psoceso
instantiate widgets straight from the native exgi@ss, much as
is done in systems such as Glade for GTK [12]. Wanrksuch an
implementation is in progress.

Finally, a user-defined template call expressionaigesource
whose type is a class of type xe:Template. Thtkégsmechanism
by which new abstractions can be created in astglet. We have
chosen to derive xe:Template from rdfs:Class ineprb take
advantage of RDF Schema in specifying the parasdtet a
template can accept: the parameters to an instarfican

xe:Template are simply rdf:Property's whose domén the

xe:Template. In other words, to instantiate a textept, wherex

has rdf:type xe:Template, create a resource whafggpe isx.

Templates, being defined in RDF, can have additiometadata
associated with them. We have predefined the >epobperty as
one derivative of the original xsl:mode attributeher derivative
properties will be introduced later). Other proft such as
those from the Dublin Core ontology [11], can besdudor

documentation purposes.

Additionally, match patterns for templates are miedi using the
xe:matchPattern property, which points to an rdtLiof

xe:MatchPattern resources. An xe:MatchPatternihastements:
a SPARQL query, and an integer score value (cfpoistity). The

Xenon engine, when evaluating a xe:ApplyTemplatgsession,
will walk the list of match patterns for a candielaemplate and
determine whether the target resource, when sutestitinto the
SPARQL query, produces a graph fragment that isbgraph of
the RDF store in use. For those match patternsafeasatisfied,
the corresponding score values are added up, ateimplate
whose cumulative score is the highest is selected.

5. HIGHER-LEVEL ABSTRACTIONS:
LENSESAND VIEWS

The Xenon ontology provides a generic frameworkdescribing
how a resource may be transformed into a presentas well as
a template matching system for supporting hetereges
composition. Our development of the Haystack systeas
elucidated some higher-level abstractions built top of
Haystack’s custom template matching system thahawe found

to be useful for building Semantic Web user integfa The two
key concepts from this work atenses andviews. In this section,
we elucidate these concepts in terms of the Xeramdwork and
describe how they can be applied to build real-avouser
interfaces.

5.1 Lenses

A lens is a component that shows information fror(passibly
singleton) set of properties of a resource thatesadense being
shown together [1]. Examples of lenses include mendens,
which shows the human-readable name of a resoamne, a
summary lens, which shows the set of key propefties given
resource. Lenses are often used to abstract a ajec@mcept
across multiple classes. For example, the notidimarihe” makes
sense for both books and people, although thegergredicate or
other means of representation used might be raylidédferent.
Using match patterns, we can define two lens tet@plthat play
the same xe:role—xe:nameLens.

In Xenon, we can model this phenomenon by createng

templates. Lens templates have type xe:LensTemplate (which

derives from xe:Template) and are assumed to calg tne
parameter: xe:target (whereas general templates tak@ an
arbitrary number of parametérsProperties, such as the size class
of the output of the lens template, can be spetiiie RDF; in

particular, we predefine the xe:size property tovala lens

template to be associated with a resource thattifilsna size
class, such as xe:fullScreen, xe:oneLine, xe:thaihbetc. As

with many Semantic Web concepts, these size ctessirces (or
other possible property values of lens templatheh tact as a
contract between the lens author and lens consuwtegreby
reuse of a resource such as xe:oneLine can bel repen to
convey the semantics intended by the author ofékeurce, and
new resources referring to different semantics loancoined at
will.

52 Views

Lens can be used to show selected pieces of infammeegarding
a resource. However, if one wants to simply “sh@wtfesource
and delegate the responsibility of deciding whielested pieces
to show, a developer can embed a special kind raf talled a
view. In Haystack, a view is defined to be a comgunthat
generates a region on the screen thatesents a given resource
[9]. To motivate our definition of view, considehet interface
exposed by a typical GUI e-mail client. Person veses are
found throughout such an application: in the Frasidfin an e-
mail editor, under the From column in the inboxitig, as a row
in the address book listing, as a standalone windlo@wing an
address book entry, etc. Similarly, when a calendapurce is
shown as a monthly calendar instead of as a daigndar, the
user is invoking different views to visualize thatlendar
resource. In the Haystack paradigm, these widdes display
representations of resources are all consideredsvief those
resources.

It is useful to embed views whenever the decisibmvioat is a
“representative” presentation should be delegatedthers. For
example, when a list of resources need to be disglanstead of

4 Because Xenon templates play the same role agidumcin
other functional languages, a utility function tiates multiple
parameters would be an example of a template tigtitmot
take a single parameter.

having the designer of the list template decidebidst lens for or
best way to present each element of the list, hghercan insert
placeholders for views of a specific size for eas$purce on the
list to be inserted. Views are also often embedd#tin other
views or lenses. If a lens needs to show a liseoipients for an
e-mail message, it can embed icon-sized views oplpe mailing
list, and group resources, thereby shifting theaasibility of
deciding the “canonical” visualization of these aases, given
the size constraints, to others.

Developers who are designing lenses can designatens
template as being\daew template if he or she believes, given the
size and/or other constraint metadata defined foe tens
template, that the lens produces a presentatidrishikely to be
representative, in the user’'s eyes, of the resobeteg shown.
For example, if one creates an icon tile-sized lefha calendar
that only shows the name of the owner of the calgnihis lens
would make a poor icon tile-sized view, because itiser is
looking at a folder of resources as a series of ities, each
resource in the folder would be represented bycan tile-sized
view, and it is unlikely that the user would recizgna line of text
with only a person’s name on it as being a calendar

One common way to build a view template is to coasivhat the
key aspects of a resource are and to embed lemsiésptay them.
The default icon tile-sized view template may siyngimbed
placeholders for an icon lens and a name lens efisag/ possibly
some generally-useful summary information such data lens or
a lens that indicates the resource’s type. (Thibésarrangement
typically seen in a file system browser such as dtims
Explorer.)

In Xenon, we can model view templates as templaiés type

xe:ViewTemplate (which derives from xe:LensTemplated role
xe:view and that are assumed to only take onerget@arameter.
All of the other properties used to characterizes|¢eemplates
apply equally to view templates.

6. EXAMPLE: A CATALOG BROWSER

To illustrate how an application can be built usiegses and
views, we have constructed an example that enablaser to
browse a heterogeneous product catalog listing. &le is
based on the following sample data, given in Note&iformat:

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-
schema#> .

@prefix xe:
<http://haystack.Ics.mit.edu/schemata/xenon#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix sample: <http://tempuri.org/sampledata#> .
@prefix schema: <http://tempuri.org/sampleschema#>

@prefix : <http://tempuri.org/samplestylesheet#> .

sample:collection
a schema:Collection ;
schema:member sample:camry ;
schema:member sample:windows95 ;
schema:member sample:www2004 .

sample:camry
a schema:Car ;
schema:name "Toyota Camry" ;

schema:manufacturer “"Toyota" ;

schema:model "2003" .
sample:windows95

a schema:Software ;

schema:name "Windows 95" ;
schema:creator "Microsoft" ;
schema:version "1995" .

sample:www2004

a schema:Book ;

dc:title "Proceedings of the 13th
International World Wide Web Conference" ;

dc:creator "ACM" ;

dc:date "2004" .

sample:joesBooks
schema:BookStore ;
"Joe's Books" ;
sample:windows95 ;
sample:www2004 .

a

rdfs:label
schema:sells
schema:sells

sample:fBay
a schema:AuctionSite ;
rdfs:label "fBay" ;

schema:sells
schema:sells

sample:windows95 ;
sample:camry .

The presentation we are aiming to produce from daita looks
like the following (given a target representaticnHIML to be
shown in a Web browser):

HC and Settings\Administrator\Desktop' <html - Microsoft Internet Explorer g@
Fle Edt View Favorites Tools Help iz
ﬂ ﬂ !) search Favorites (gl Media) ~ 3
2003 g Toyota Camry Tovota
I » Joe's Books
1995 « fBay Windows 95 Microsoft
| |« Joe'sBooks|, - . - s .
12004 Pr dings of the 13th World Wide Web Conference ACM
&] Done & My Computer =
We have intentionally left out column headers, ezoe

formatting, and other extraneous elements from example to
better illustrate the core concepts at play. Thieroos here list
the year a product was made available, a list@&thres at which
the product can be bought, the name of the procarad, the
creator of the product. Note that the schemas irsé¢ide sample
data for representing cars uses different RDF ptigse for

naming similar attributes than does the schemadoks.

6.1.1 Creating a Smple View Template

The second column shows a listing of the storet ¢hary the

product named in that row. Therefore, it is likétat the decision
of how to represent the store resources in thesieds should be
delegated to a view. We use the xe:inline sizesdlagefer to the
fact that the view should be a piece of text silétdbr insertion

into a paragraph. Given the size constraints, asoreble
presentation is one in which only the title is shoWwhe following

code defines such an inline view template that elslibe name
lens:

xe:target
rdfs:domain :DefaultinlineView

:DefaultinlineView

a xe:ViewTemplate ;
xe:role Xe:view ;
xe:size xe:inline ;
xexmatch () # Matches everything
xe:body [

a xe:ApplyTemplates ;

xe:select [

a xe:ldentifier ;

xe:name xe:target

|

xe:filter "PREFIX xe:
<http://haystack.Ics.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE (?TARGET xe:role
xe:nameLens)"

Two observations should be pointed out at this fpdtirst, the
match pattern is empty, so the default match sabiewill apply.
If other, more specific templates are created im dlze class, then
they must produce match scores greater than 1s Asei case in
many domains, we believe conventions will devetoggecify the
scales of match scores for specific roles.

Additionally, our SPARQL queries assume that omg @ariable,
?TARGET, is being queried far.

6.1.2 Creating a Smple Lens Template

To illustrate the process of defining a lens tereplave will create
a default name lens that uses the rdfs:label prpjsrdefault to
extract the name of a resource:

xe:target
rdfs:domain :DefaultNameLens

:DefaultNamelLens
a xe:LensTemplate ;
xe:role xe:namelens ;
xe:size xe:inline ;

xe:match () ; # Matches everything
xe:body [
a xhtml:Text;
xe:body [
a xe:Select ;
xe:singleResult "true";
xe-filter "PREFIX xe:

<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?TARGET WHERE ($xe:target dc:title
?TARGET)"

]
}
}

In this example, one notes that the SPARQL queryuse a $
prefix to refer to variables currently in scope,daBPARQL
queries can be annotated with the xe:singleResartnpeter to
instruct the query engine to only return one result

6.1.3 Creating a Specialized Lens Template

The columns in the listing are all showing differ@moperties of
the resources represented by the rows of the tdhieas we
pointed out earlier, the resources do not all skaeetly the same
schematic representation for these properties. e therefore
constructed lenses to abstract away these diffeseincunderlying
representation.

To define the “year lens”, we need to create l@amplates for
each of the possible underlying representationyedr”. These
templates are distinguished by their match pattdtese is the
definition for the year lens for the schema:Casgla

xe:target
rdfs:domain :CarYearLens

° Because the SPARQL specification is currentlyaftdwe have
adopted a syntactic variation on the SPARQL synték our
internal implementation and will update it to comoto the
final syntax when it is released. The latest SPAR@htax has
been incorporated into this paper for ease of taitya

:CarYearLens
a xe:LensTemplate ;
xe:role :yearlLens;
xe:size xe:inline ;

xe:match (
[a xe:MatchPattern ;
xe:fiter "PREFIX xe:

<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#> SELECT ?TARGET WHERE ($xe:target
rdf:type schema:Car)" ;
xe:score "2"
]

)
xe:body [
a xhtml:Text ;
xe:body [
a xe:Select ;
xe:singleResult "true";
xe-filter "PREFIX xe:

<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?TARGET WHERE ($xe:target schema:model
?TARGET)"

]

}
}
6.1.4 The Sold-by Lens
The lens that shows the list of stores that sellgiiven resource is
different from the ones we have seen so far becieabeds a
list of resources. The sold-by lens template usesea-orEach to
iterate over the stores that carry the productpwreach in an
 tag, and uses an xe:ApplyTemplates to embed th
appropriate inline view template:

xe:target
rdfs:domain :DefaultSoldByLens

:DefaultSoldByLens
xe:role sample:soldByLens ;

xe:match () ; # Matches everything
xe:body [
a xhtml:UL ;
xe:body [
a xe:ForEach ;
xe:select [
a xe:Select ;
xe:fiter "PREFIX xe:

<http://haystack.lcs.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE (?TARGET schema:sells
?xe:target)"

xe:loopVar :x;

xe:body [
a xhtml:LI;
xe:body [
a xe:ApplyTemplates ;
xe:select [
a xe:ldentifier ;
Xe:name X
|
xe:filter "PREFIX xe:

<http://haystack.lcs.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE (?TARGET xe:size xe:inline)
(?TARGET xe:role xe:view)"
]
]
]
]

6.1.5 Putting it all together

Finally we can create a view template for the sangpllection
resource. First, here is a top level template fawimy the
example:

sample:CollectionExampleDriver
a xe:Template ;

xe:body [
a xhtml:P;
xe:body [
a xe:With ;
xe:name lensList ;
xe:select [
a xe:Select ;
xefilter "PREFIX xe:

<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX : <http://tempuri.org/samplestylesheet#>
SELECT ?TARGET WHERE (:lenses schema:member
?TARGET)"

I
xe:body [
a :CollectionView ;
xe:target [
a xe:Resource ;

xe:resource sample:collection

]
]
]

sample:lenses
:member xe:namelLens ;
:member xe:creatorLens ;
:member sample:yearLens ;
:member sample:soldByLens

The template iterates over the members of the aale and

embeds a second, helper template that in turn gesen table
row and embeds the appropriate lenses within <Tays.tNote
the use of the dynamically-scoped variable, defimethe driver

code, for passing in the list of lenses. Because vemplates are
normally invoked via xe:ApplyTemplates, which omlgcepts one
parameter, using dynamic scoping permits otherrpaiers to be
passed through (cf. xsl:with-param in xsl:apply{ates).

xe:target
rdfs:domain :CollectionView

:CollectionView
a xe:ViewTemplate ;

xe:match (
[a xe:MatchPattern ;
xefilter "PREFIX xe:

<http://haystack.Ics.mit.edu/schemata/xenon#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#> SELECT ?TARGET WHERE ($xe:target
rdf:type schema:Collection)" ;
xe:score "2"
]

)
xe:body [
a xhtml:TABLE ;
xe:body [
a xe:ForEach;
xe:select [
a xe:Select;
xefilter "PREFIX xe:
<http://haystack.Ics.mit.edu/schemata/xenon#>
SELECT ?TARGET WHERE ($xe:target schema:member
?TARGET)"

xe:loopVar :x;
xe:body [
a xhtmlTR;
xe:body [

a :Helper;

xe:target [
a xe:ldentifier ;
xe:name X

]
]
]
]

xe:target
rdfs:domain :Helper

:Helper
a xe:Template ;
xe:body [
a xe:ForEach ;
xe:select [
a xe:ldentifier ;
xe:name :lensList
b
xe:loopVar :x;
xe:body [
a xhtml:TD ;
xe:body [
a xe:ApplyTemplates ;
xe:select [
a xe:ldentifier ;
xe:name xe:target

xe:fiter "PREFIX xe:
<http://haystack.lcs.mit.edu/schemata/xenon#>
PREFIX : <http://tempuri.org/samplestylesheet#>
SELECT ?TARGET WHERE (?TARGET xe:role $:x)"

]
]
]

7. DISCUSSION AND RELATED WORK
There are a number of benefits that arise from ube of a
functional Turing universal stylesheet ontology fswas Xenon.
First, it is easy to support abstractions that [tepresentation
knowledge to be described to the extent to whideeeloper, a
designer, or some other contributor wishes to $pede have
described one possible abstraction, views and $erntsat has
been shown to have broad applicability in Haystaatoss
domains as varied as media players, e-mail, anthfbronatics
[1], but other abstractions are of course possible.

One theme that is prevalent is the notion that cantk data are
not heavily distinguished, a notion reminiscentasfguages such
as Lisp. In the catalog browser example from Sadfipone sees
that some pieces of presentation metadata seem likerdSP-

style HTML generation code (e.g., :CollectionViewyhereas
others are more like fragments of configuratioradaeant to act
as parameters to other templates (e.g., sammedgnBecause
templates use RDF Schema to describe their paresndieth

“code” and “data” have the same form and differyoby the

complexity of the domain they are describing.

As a result, the stylesheet designer, in creatingresentation
system, is given a lot of freedom to split the us#erface
specification between the “static code library"—thertion that
stays fixed—and “customizations”—the part that isvied by
people contributing ontology-specific adjustmerdstiie system.
On one extreme, contributors provide only a “baseds
specification” (e.g., a list of important propestias a property of
the rdfs:Class) that is consumed by a default viemplate that
matches against all resources and locates the iarggsroperties
using a query against the class. On the otherragtreontributors

provide stylesheet templates that use the full @sgive power of
the functional language, including conditional codeops,
placeholders for other templates, etc. An exampla paradigm
in the middle is one in which templates simply cather
templates with static parameters such as the sadreperties for
each class:
:PersonViewTemplate
a xe:ViewTemplate ;
xe:body [
a :DefaultViewTemplate ;
:importantProperties (:name :address) ;

Pass the target resource through
xe:target [
a xe:ldentifier ; xe:name xe:target
]
]

We believe this level of flexibility allows develegs to produce
reusable libraries of code that implement a varwtydifferent
interface styles. Furthermore, our stylesheet m@sha enables
systems that rigidly support only one of the ex@ergiven above
to gradually move to a more general paradigm ofptata-based
customization. For example, the Longwell facetedtaahata
browser [3] allows users to visualize a resouree ikin focus by
means of a customizable list of properties. Usarsaiso pivot to
other resources that are related to the currentires by a shared
property (these pivot points are called facetse $hecifications
of which properties to display and what facets arailable are
defined against a custom RDF schema. Using thee*banes”
approach, one could construct a stylesheet thatl thase
specifications and produced screens similar toettodd ongwell.
Other automatically-generated, form-based RDF userfaces,
such as those produced by Protégé [13] and SEALcfR]ld be
reproduced with a similar approach. However, byimgldriew
templates that overrode the default templates,conéd begin to
gradually introduce higher levels of customizatitran those
implied by the custom RDF schema-driven configorati
metadata data.

One difference between Xenon and systems like §éoie that
Xenon only attacks the problem of visualizing erigt RDF

content. We are also interested in the problemmtdriaces that
record RDF, as was discussed in a previous paperTi%e

Haystack browser supports RDF authoring, but wdaaiing for

ways to add authoring support into Xenon.

8. REFERENCES

[1] Quan, D. and Karger, D. How to Make a Semantic Web
Browser. Proceedings of WWW 2004.

[2] Stojanovic, N., Maedche, A., Staab, S., StuderSRre, Y.
SEAL: a framework for developing SEmantic PortALs.
Proceedings of the International Conference on Kedge
Capture October 2001.

[3] The Simile Longwell Project. http://simile.mit.ethrigwell/.

[4] XSL Transformations (XSLT) Version 1.0.
http://lwww.w3.org/TR/xslt.

[5] XSL Transformations (XSLT) Version 2.0.
http://iwww.w3.0rg/TR/xslt20/.

[6] Quan, D., Huynh, D., and Karger, D. Haystack: Atfetan
for Authoring End User Semantic Web Applications.
Proceedings of ISWC 2003.

[7] Berners-Lee, T. Primer: Getting into RDF & Semaittieb
using N3. http://www.w3.0rg/2000/10/swap/Primer.htm

[8] SPARQL Query Language for RDF.
http://www.w3.0rg/TR/2004/WD-rdf-sparql-query-
20041012/.

[9] Quan, D., Karger, D., and Huynh, D. RDF Authoring
Environments for End Users. Proceedings of Sematéb
Foundations and Application Technologies 2003.

[10]RDQL—A Query Language for RDF.
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/.

[11] Dublin Core Metadata Initiative. http://dublincareg/.

[12] Glade GTK+ User Interface Builder. http://glade.g@oorg/.

[13]Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergu, R.,
and Musen, M. Creating Semantic Web Contents with
Protege-2000.EEE Intelligent Systems 16 (2), 2001, pp. 60-
71.

