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ABSTRACT 
Bringing information to bear from diverse sources to automate 
tedious processes for the user is a key tenet of the Semantic Web 
vision. In previous papers we argued that visualizing 
semantically-connected corpora is not only a prime example of 
one of these processes but is also a critical problem that must be 
solved to gain acceptance from the broader community as to the 
benefits of RDF. In this paper we elaborate on the specific topic 
of ontologies for describing how resources should be presented to 
the user. We propose the creation of an RDF stylesheet language, 
reusing many of the key ideas of the XSL Transformations 
language (XSLT), but incorporating the requirement that when 
multiple ontologies are used in the description of a resource to be 
presented, multiple stylesheets, potentially from different authors, 
will need to be composed. This notion of enabling heterogeneous 
composition motivates the definition of our basic building block 
concepts of view and lens. In addition to abstractly characterizing 
our notion of an RDF stylesheet, we also describe our concrete 
instantiation of these ideas in the Xenon ontology. Finally, we 
give a concrete example illustrating how our stylesheet 
mechanisms enable developers to easily produce both HTML-
based and custom rich client-based browsers for heterogeneous 
datasets. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – abstract data types, polymorphism, control structures.  

General Terms 
Human Factors, Languages. 

Keywords 
Stylesheet, XSLT, RDF, Semantic Web. 

1. INTRODUCTION 
The Semantic Web vision proposes enabling radically new forms 
of automation from multiple information sources being made 
compatible with one another through a common representation—
RDF. RDF Schema and OWL provide ways of describing how the 
concepts in different corpora with different schemas relate to one 
another. When a Semantic Web agent encounters data that 
invokes terms from multiple ontologies, it can use OWL 
definitions to intelligently decide how to deal with this data. The 

key concept from OWL we wish to highlight is heterogeneous 
composition—the notion that the knowledge embedded in OWL 
ontologies written by multiple parties can be readily combined to 
facilitate making inferences from across information corpora. 

We argued in a previous paper [1] that providing a “user agent” is 
a fundamental prerequisite to the proliferation of the Semantic 
Web. By user agent we are referring to a Semantic Web browser, 
which, like previous user agents (e.g., the Web browser), is 
responsible for allowing users to navigate information corpora 
and consequently instilling in users the ability to experience the 
power of information integration first hand.  

Like other Semantic Web agents, the Semantic Web browser must 
deal with the metadata heterogeneity that is both a strength and a 
source of complexity for the Semantic Web. In our previous 
paper, we defined the concept of lens—a component that extracts 
and displays a set of related information about a resource. 
Building browsing interfaces around lenses enables a limited form 
of heterogeneous composition because lenses can be defined to 
work across multiple classes and lenses from multiple authors can 
be combined at runtime to highlight information from different 
ontologies. 

In this paper we take a step back from lenses to describe a more 
general mechanism for enabling heterogeneous composition for 
user agents. We term this mechanism a “stylesheet ontology” in 
analogy to the use of stylesheets on the Web and for XML as a 
way to abstract presentation from content. If we assume that 
stylesheets were deemed useful in the HTML and XML contexts, 
we claim that RDF possesses an even stronger need for 
stylesheets. HTML (and to some degree XML as well, when the 
schema in play is simple) is designed to yield human-readable 
content in a browser, whereas datasets that utilize the expressive 
power of RDF are rarely human-readable—regardless of the 
syntax used. Even when RDF is expressed in Notation3 syntax 
[7], one finds it challenging to discern the connected graph of 
relationships embedded in RDF content to the user through a 
straightforward textual syntax. 

Our goal is to allow the creation of “intuitive” user interfaces that 
are specialized to specific kinds of resources and to specific 
situations. For example, resources shown on the screen should be 
properly identified by some human-readable appellation and 
almost never by a URI. Rarely are all the properties of a resource 
relevant in a given context; they should be properly filtered so as 
to not overload the user. The properties that are relevant need to 
be laid out and ordered in a sensible fashion or according to an 
accepted convention. Additionally, the user should not be 
impeded by the fact that two or more concepts regarded as 
equivalent to the user in some context (for example, “title of a 
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book” and “subject of an e-mail” are both names) are represented 
differently by the system. Our stylesheet ontology aims to 
promote these goals within the context of a heterogeneous 
metadata space. 

The paper is organized as follows. We begin with a discussion of 
the basic notions of the role heterogeneous composition plays in 
the visualization of RDF metadata. Next, we review the key 
concepts of the XSLT language and describe how they apply to 
RDF. We present our prototype Xenon stylesheet ontology that 
instantiates these concepts and describe a pattern matching 
mechanism that generalizes the corresponding notion from XSLT. 
Then, we apply the Xenon stylesheet ontology to define the 
concepts of view and lens and describe an example stylesheet that 
incorporates these two concepts. Finally, we discuss how our 
approach compares to and complements other systems for RDF 
presentation. 

2. A MODEL FOR COMPOSING RDF 
PRESENTATION KNOWLEDGE 
As a semantic network representation, RDF makes it easy for 
metadata fragments created by independent parties to be 
combined together into a cohesive whole. During this process, 
resources whose classes were designed separately may become 
connected by RDF statements, and similarly the aggregated list of 
properties for any given resource may include predicates coined 
by many different people. Thus, in creating a presentation system 
for RDF, a challenge exists as to how to visualize an arbitrary 
resource given the heterogeneity of its description. 

There are two extremes to consider. One extreme is that any 
possible combination of classes and properties must have 
associated with it a user interface that was specifically designed 
for it. This setup is common in desktop applications today, such 
as in address book systems, because the schema is fixed at the 
time of development. It is especially useful when the user 
interface must possess a high level of refinement. The flip side is 
that, given the distributed nature of the Semantic Web, the space 
of possible combinations of classes and properties may be 
exponentially prohibitive, and only specific combinations that are 
frequently used will likely have specialized interfaces designed for 
them. 

On the other extreme is a componentized model whereby 
presentation knowledge for each class and property is provided 
separately and can be assembled incrementally to produce a 
presentation for any given combination. This model certainly 
scales better given the setup of the Semantic Web, but the 
challenge becomes one of ensuring that the components will 
“snap together” cleanly when they must be brought to bear to 
present any given resource. 

We argue for a paradigm that allows both extremes to coexist. 
Contributors of presentation knowledge should be permitted to 
express user interface constraints at any level of granularity and to 
whatever the extent known by the contributor. Such a system is 
consistent with RDF’s fine level of granularity, where authors can 
assert knowledge about a resource as fine as one statement.  

We will refer to such a contribution as a template. Templates 
specify how to show some piece of information related to a 
resource and consist of two main components: the presentation 
content to be displayed, and metadata describing the conditions 
under which the template is valid. Presentation content can 
incorporate text and graphics, as well as placeholders for 

parameterized content such as properties of the displayed resource 
(e.g., name, creator, etc.). 

When these properties-to-be-displayed point to other resources, 
templates can contain placeholders for other templates to supply 
that fragment of the presentation. In this way, authors can reuse 
presentation knowledge not necessarily created by them. The use 
of placeholders and embedded templates also permits a reusable 
piece of presentation knowledge to be consolidated in specific 
templates and to not be duplicated across multiple templates. Of 
course, placeholder usage is not mandatory; it is possible under 
this scheme to accommodate completely monolithic templates that 
do not change when new presentation information is added. 

Placeholders need not be specific about which template to embed. 
Instead, templates include metadata that constrain their usage, 
such as “made to fit in a small space” or “only applies to 
resources of type foo:Foo”, and the placeholder can be set up to 
specify templates with certain criteria.  

Part of the constraint definition for a template can indicate what 
role the template is serving. Some templates might show a 
summary of the given resource, while others may only provide 
some portion, such as the title or the date (where the definition of 
what date to use would depend on the kind of resource). Roles are 
important because they free the developer to specify as little or as 
much presentation knowledge as desired or available. 

This arrangement brings about a sort of template “marketplace”, 
whereby a template can advertise its need for another template 
that can play a specific role. As a result, multiple templates may 
exist for any given set of constraints. This is a good thing—
multiple authors should be allowed to contribute their ideas. Some 
templates will be very specific, and others will be more general, 
allowing other templates to add in their contributions. Some 
templates will present semantically-differing views of the 
resource, and others will only change the presentation 
superficially like MP3 player skins. Furthermore, we believe that 
users should be given the freedom to choose amongst the different 
possibilities whenever a placeholder is involved. It is in this 
flexibility that true end user customizability of the interface can be 
achieved. This idea is discussed further in Section 7. 

3. APPLYING THE CORE CONCEPTS OF 
XSLT TO RDF 
So far we have described a framework for characterizing 
presentation knowledge that encourages reuse when applied to the 
visualization of heterogeneous datasets. What we have not 
described are the nuts-and-bolts details, such as how templates are 
implemented and how expressive the template definition language 
is. To actually instantiate this framework as a concrete language 
that can be used, we look to systems that have been developed 
that espouse the core concepts involved. Here we examine 
XSLT—a W3C-standardized language for describing 
transformations from one XML document to another. Although 
the structure of an XSLT program’s input is an XML file and 
hence tree-shaped, we have found that the XSLT paradigm for 
doing transformation to be applicable to general RDF graphs. In 
this section we analyze XSLT to guide the development of a 
complete language based on our framework. 



XSLT is a Turing universal language with functions, static and 
dynamic1 scoping, and functional constructs for implementing 
conditional logic and loops. These features let programmers 
package commonly-used code for reuse, do complex data 
manipulations, and implement other functionality commonly 
needed when developing a user interface. Certainly, Turing 
universality is a double-edged sword: the downside of many 
declarative user interface toolkits is that they are not expressive 
enough and must be abandoned in favor of a “full” programming 
language for many frequent use cases; yet, when languages are too 
expressive, automated analysis for use by WYSIWYG form 
designers or optimizing compilers becomes difficult. However, 
because XSLT is a functional language, many forms of static 
analysis remain possible, and the lack of support for side-effects 
and restricted data access mechanisms ensure that XSLT programs 
are generally verifiably safe to run, as are most programs that run 
within a sandboxed virtual machine2. 

XSLT’s support for functions manifests itself in the form of 
templates. Like the templates notion discussed in Section 2, XSLT 
templates describe a portion of the resulting presentation that is 
parameterized by some input node (in the case of XSLT, XML 
DOM node, and in RDF’s case, RDF graph node) and can be 
restricted for use on specific kinds of nodes. XSLT templates can 
also invoke other templates, both directly and by use of a kind of 
placeholder known in XSLT as “apply-templates”. Finally, XSLT 
templates can also take an arbitrary number of additional 
parameters. 

Data access in XSLT is achieved through XPath expressions that 
allow an XSLT program to navigate the input document and to 
extract information from it. What ties XSLT’s notion of data 
access to the XML DOM tree model is the fact that XPath is 
being used. When XPath is replaced by a graph query language, 
such as SPARQL [8] or RDQL [10], we find that the XSLT 
template paradigm maps nicely onto the framework delineated in 
Section 2: templates produce output fragments with placeholders 
that extract data from the RDF graph instead of from an XML 
input document. 

When a placeholder calls for another template to be embedded to 
present a given node, the template whose match pattern most 
closely fits the given node is used. Match patterns in XSLT are 
described using XPath syntax, but as before, when XPath patterns 
are replaced with graph matching patterns, we find that the XSLT 
model remains applicable. The main challenge is in defining a 
graph matching pattern language whereby patterns can be ordered 
by match specificity so that placeholders can identify the “best” 
match. We address this problem in the next section. 

Templates in XSLT can be assigned to a mode; modes are used to 
partition the set of templates defined by an XSLT program and 
can be specified in an apply-templates call to filter the set of 
templates from which a match can be made. We feel that mode is 
just one possible attribute that can be used to restrict the set of 
templates, and given the expressive power of RDF, modes can be 

                                                                 
1 Only a fixed set of variables such as the current node and current 

position are dynamic in XSLT 1.0; in the upcoming XSLT 2.0 
specification, the user can define an unlimited number of 
dynamically-scoped variables called “tunnel parameters”. 

2 Obviously, one thing that cannot be detected, as with Java, 
JavaScript, and other Turing universal languages, is whether the 
code will terminate. 

replaced by general RDF queries for isolating a group of 
templates.  

4. XENON PROTOTYPE 
IMPLEMENTATION 
In the previous section we asserted that the XSLT model can be 
effectively reapplied to RDF to implement the stylesheet 
framework described in Section 2. The language we have built to 
implement this modified XSLT model is called Xenon and is 
described in this section. In addition to replacing XPath with RDF 
analogs, we have also made some changes to the language that 
help it to better act as a medium for recording presentation 
knowledge in a Semantic Web environment.  

The Xenon stylesheet language is specified as an RDF ontology. 
In other words, the role the abstract syntax tree (AST) usually 
plays in functional languages such as XSLT or Lisp is played by 
an RDF fragment. The Xenon RDF-based AST is actually a 
directed acyclic graph (DAG). By representing an AST in RDF, 
we have therefore drawn a correspondence between the terms 
“language” and “ontology”: a Xenon stylesheet is RDF written 
with respect to the Xenon ontology. 

There are several benefits to using RDF to represent a Xenon 
stylesheet. First, stylesheet information should be as easily 
distributable and universal as schema or ontology information, 
and using an RDF representation removes most of the syntactic 
barriers to achieving these goals. Second, there is no need to force 
users to adopt a specialized syntax; existing syntaxes such as 
Notation3 and RDF/XML can be chosen from. Third, RDF has a 
built-in notion of what it means to merge two fragments of RDF, 
and so the semantics of combining two Xenon stylesheets is 
therefore clearly defined. 

Xenon, like XSLT3, is a pure functional language with no side 
effects. The basic element in Xenon code therefore is the 
expression, and as is typical in functional languages, expressions 
are designed to be arbitrarily nested. Expressions are manifested 
in the form of resources, whose rdf:type assertion dictates the type 
of expression being recorded. Some of an expression’s properties 
point to other expressions, just as an AST node has children nodes 
that represent its arguments. There are three kinds of expressions: 
built-in expressions (analogous to special forms in Scheme or 
Lisp), native expressions, and user-defined template calls.  

We describe six basic expressions built into Xenon. First, the 
xe:Let expression binds a variable name to another expression; 
this variable name is statically scoped (cf. xsl:variable). The 
corresponding xe:Identifier expression evaluates to the value 
named by the given variable name. xe:With is like xe:Let, except 
that the variable name is dynamically scoped (dynamic scoping is 
used to support cascading properties, such as font or background 
color). xe:If evaluates to the first consequent if the condition 
evaluates to true; otherwise, it evaluates to the second consequent 
(cf. xsl:choose). xe:ForEach iterates over a list of objects and 
concatenates the values that result from evaluating the body 
expression with the loop variable bound to the current object (cf. 
xsl:for-each). Finally, xe:Resource allows a URI immediate value 
to be expressed. 

                                                                 
3 XSLT 1.0 is a pure functional language when the generate-id() 

function is never used. 



Native expressions provide access to functionality that is most 
easily implemented by the underlying system but does not require 
new variable bindings to be introduced. We highlight two such 
expressions here. xe:Select encapsulates a SPARQL query and 
returns a list of results. xe:ApplyTemplates takes a resource and a 
SPARQL query constraining the list of templates over which to be 
searched and returns the content created by that template.  

In addition, native expressions perform another basic function: the 
instantiation of content. Unlike XSLT, where arbitrary XML 
result tree fragments can be instantiated, Xenon abstracts the 
production of result content into a library of native expressions. 
Another way to think about this is that Xenon requires the output 
content to conform to a schema that is known in advance. In our 
initial implementation, we have chosen to use a slightly-modified 
version of the XHTML tag set to name these native expressions.  

There are two reasons for our decision to abstract content 
generation in terms of native templates. First, it is not necessary to 
define a general RDF-to-RDF transformation language: that is the 
whole point of an inference engine. Second, our representation 
allows us to create both markup-based (e.g., XHTML) and 
widget-based versions from the same stylesheet. This is because 
the Xenon representation allows a stylesheet processor to 
instantiate widgets straight from the native expressions, much as 
is done in systems such as Glade for GTK [12]. Work on such an 
implementation is in progress. 

Finally, a user-defined template call expression is a resource 
whose type is a class of type xe:Template. This is the mechanism 
by which new abstractions can be created in a stylesheet. We have 
chosen to derive xe:Template from rdfs:Class in order to take 
advantage of RDF Schema in specifying the parameters that a 
template can accept: the parameters to an instance of an 
xe:Template are simply rdf:Property’s whose domain is the 
xe:Template. In other words, to instantiate a template x, where x 
has rdf:type xe:Template, create a resource whose rdf:type is x. 

Templates, being defined in RDF, can have additional metadata 
associated with them. We have predefined the xe:role property as 
one derivative of the original xsl:mode attribute (other derivative 
properties will be introduced later). Other properties, such as 
those from the Dublin Core ontology [11], can be used for 
documentation purposes.  

Additionally, match patterns for templates are defined using the 
xe:matchPattern property, which points to an rdf:List of 
xe:MatchPattern resources. An xe:MatchPattern has two elements: 
a SPARQL query, and an integer score value (cf. xsl:priority). The 
Xenon engine, when evaluating a xe:ApplyTemplates expression, 
will walk the list of match patterns for a candidate template and 
determine whether the target resource, when substituted into the 
SPARQL query, produces a graph fragment that is a subgraph of 
the RDF store in use. For those match patterns that are satisfied, 
the corresponding score values are added up, and a template 
whose cumulative score is the highest is selected.  

5. HIGHER-LEVEL ABSTRACTIONS: 
LENSES AND VIEWS 
The Xenon ontology provides a generic framework for describing 
how a resource may be transformed into a presentation as well as 
a template matching system for supporting heterogeneous 
composition. Our development of the Haystack system has 
elucidated some higher-level abstractions built on top of 
Haystack’s custom template matching system that we have found 

to be useful for building Semantic Web user interfaces. The two 
key concepts from this work are lenses and views. In this section, 
we elucidate these concepts in terms of the Xenon framework and 
describe how they can be applied to build real-world user 
interfaces. 

5.1 Lenses 
A lens is a component that shows information from a (possibly 
singleton) set of properties of a resource that makes sense being 
shown together [1]. Examples of lenses include a name lens, 
which shows the human-readable name of a resource, and a 
summary lens, which shows the set of key properties for a given 
resource. Lenses are often used to abstract a general concept 
across multiple classes. For example, the notion of “name” makes 
sense for both books and people, although the precise predicate or 
other means of representation used might be radically different. 
Using match patterns, we can define two lens templates that play 
the same xe:role—xe:nameLens. 

In Xenon, we can model this phenomenon by creating lens 
templates. Lens templates have type xe:LensTemplate (which 
derives from xe:Template) and are assumed to only take one 
parameter: xe:target (whereas general templates can take an 
arbitrary number of parameters4). Properties, such as the size class 
of the output of the lens template, can be specified in RDF; in 
particular, we predefine the xe:size property to allow a lens 
template to be associated with a resource that identifies a size 
class, such as xe:fullScreen, xe:oneLine, xe:thumbnail, etc. As 
with many Semantic Web concepts, these size class resources (or 
other possible property values of lens templates) then act as a 
contract between the lens author and lens consumer, whereby 
reuse of a resource such as xe:oneLine can be relied upon to 
convey the semantics intended by the author of the resource, and 
new resources referring to different semantics can be coined at 
will. 

5.2 Views 
Lens can be used to show selected pieces of information regarding 
a resource. However, if one wants to simply “show” a resource 
and delegate the responsibility of deciding which selected pieces 
to show, a developer can embed a special kind of lens called a 
view. In Haystack, a view is defined to be a component that 
generates a region on the screen that represents a given resource 
[9]. To motivate our definition of view, consider the interface 
exposed by a typical GUI e-mail client. Person resources are 
found throughout such an application: in the From field in an e-
mail editor, under the From column in the inbox listing, as a row 
in the address book listing, as a standalone window showing an 
address book entry, etc. Similarly, when a calendar resource is 
shown as a monthly calendar instead of as a daily calendar, the 
user is invoking different views to visualize that calendar 
resource. In the Haystack paradigm, these widgets that display 
representations of resources are all considered views of those 
resources.  

It is useful to embed views whenever the decision of what is a 
“representative” presentation should be delegated to others. For 
example, when a list of resources need to be displayed, instead of 

                                                                 
4 Because Xenon templates play the same role as functions in 

other functional languages, a utility function that takes multiple 
parameters would be an example of a template that might not 
take a single parameter. 



having the designer of the list template decide the best lens for or 
best way to present each element of the list, he or she can insert 
placeholders for views of a specific size for each resource on the 
list to be inserted. Views are also often embedded within other 
views or lenses. If a lens needs to show a list of recipients for an 
e-mail message, it can embed icon-sized views of people, mailing 
list, and group resources, thereby shifting the responsibility of 
deciding the “canonical” visualization of these resources, given 
the size constraints, to others. 

Developers who are designing lenses can designate a lens 
template as being a view template if he or she believes, given the 
size and/or other constraint metadata defined for the lens 
template, that the lens produces a presentation that is likely to be 
representative, in the user’s eyes, of the resource being shown. 
For example, if one creates an icon tile-sized lens of a calendar 
that only shows the name of the owner of the calendar, this lens 
would make a poor icon tile-sized view, because if a user is 
looking at a folder of resources as a series of icon tiles, each 
resource in the folder would be represented by an icon tile-sized 
view, and it is unlikely that the user would recognize a line of text 
with only a person’s name on it as being a calendar. 

One common way to build a view template is to consider what the 
key aspects of a resource are and to embed lenses to display them. 
The default icon tile-sized view template may simply embed 
placeholders for an icon lens and a name lens, as well as possibly 
some generally-useful summary information such as a date lens or 
a lens that indicates the resource’s type. (This is the arrangement 
typically seen in a file system browser such as Windows 
Explorer.) 

In Xenon, we can model view templates as templates with type 
xe:ViewTemplate (which derives from xe:LensTemplate) and role 
xe:view and that are assumed to only take one xe:target parameter. 
All of the other properties used to characterize lens templates 
apply equally to view templates.  

6. EXAMPLE: A CATALOG BROWSER 
To illustrate how an application can be built using lenses and 
views, we have constructed an example that enables a user to 
browse a heterogeneous product catalog listing. Our example is 
based on the following sample data, given in Notation3 format: 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> . 
@prefix xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> . 
@prefix dc: <http://purl.org/dc/elements/1.1/> . 
@prefix sample: <http://tempuri.org/sampledata#> . 
@prefix schema: <http://tempuri.org/sampleschema#> 
. 
@prefix : <http://tempuri.org/samplestylesheet#> . 
 
sample:collection 
 a       schema:Collection ; 
 schema:member   sample:camry ; 
 schema:member   sample:windows95 ; 
 schema:member   sample:www2004 . 
 
sample:camry 
 a       schema:Car ; 
 schema:name    "Toyota Camry" ; 
 schema:manufacturer "Toyota" ; 
 schema:model   "2003" . 
 
sample:windows95 
 a       schema:Software ; 

 schema:name    "Windows 95" ; 
 schema:creator   "Microsoft" ; 
 schema:version   "1995" . 
 
sample:www2004 
 a       schema:Book ; 
 dc:title     "Proceedings of the 13th 
International World Wide Web Conference" ; 
 dc:creator    "ACM" ; 
 dc:date     "2004" . 
 
sample:joesBooks 
 a       schema:BookStore ; 
 rdfs:label    "Joe's Books" ; 
 schema:sells   sample:windows95 ; 
 schema:sells   sample:www2004 . 
 
sample:fBay 
 a       schema:AuctionSite ; 
 rdfs:label    "fBay" ; 
 schema:sells   sample:windows95 ; 
 schema:sells   sample:camry . 
 

The presentation we are aiming to produce from this data looks 
like the following (given a target representation of HTML to be 
shown in a Web browser): 

 
We have intentionally left out column headers, excessive 
formatting, and other extraneous elements from our example to 
better illustrate the core concepts at play. The columns here list 
the year a product was made available, a list of the stores at which 
the product can be bought, the name of the product, and the 
creator of the product. Note that the schemas used in the sample 
data for representing cars uses different RDF properties for 
naming similar attributes than does the schema for books. 

6.1.1 Creating a Simple View Template 
The second column shows a listing of the stores that carry the 
product named in that row. Therefore, it is likely that the decision 
of how to represent the store resources in those listings should be 
delegated to a view. We use the xe:inline size class to refer to the 
fact that the view should be a piece of text suitable for insertion 
into a paragraph. Given the size constraints, a reasonable 
presentation is one in which only the title is shown. The following 
code defines such an inline view template that embeds the name 
lens: 
xe:target 
 rdfs:domain :DefaultInlineView 
 
:DefaultInlineView 
 a    xe:ViewTemplate ; 
 xe:role  xe:view ; 
 xe:size  xe:inline ; 
 xe:match  () ;        # Matches everything 
 xe:body [ 
  a xe:ApplyTemplates ; 
  xe:select [ 
   a   xe:Identifier ; 
   xe:name xe:target 



  ] ; 
  xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
SELECT ?TARGET WHERE (?TARGET xe:role 
xe:nameLens)" 
 ] 
 

Two observations should be pointed out at this point. First, the 
match pattern is empty, so the default match score of 1 will apply. 
If other, more specific templates are created in this size class, then 
they must produce match scores greater than 1. As is the case in 
many domains, we believe conventions will develop to specify the 
scales of match scores for specific roles. 

Additionally, our SPARQL queries assume that only one variable, 
?TARGET, is being queried for.5 

6.1.2 Creating a Simple Lens Template  
To illustrate the process of defining a lens template, we will create 
a default name lens that uses the rdfs:label property by default to 
extract the name of a resource: 
xe:target 
 rdfs:domain :DefaultNameLens 
 
:DefaultNameLens 
 a    xe:LensTemplate ; 
 xe:role xe:nameLens ; 
 xe:size xe:inline ; 
 xe:match () ;   # Matches everything 
 xe:body [ 
  a xhtml:Text ; 
  xe:body [ 
   a      xe:Select ; 
   xe:singleResult "true" ; 
   xe:filter   "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
PREFIX dc: <http://purl.org/dc/elements/1.1/> 
SELECT ?TARGET WHERE ($xe:target dc:title 
?TARGET)" 
  ] 
 } 
} 
 

In this example, one notes that the SPARQL query can use a $ 
prefix to refer to variables currently in scope, and SPARQL 
queries can be annotated with the xe:singleResult parameter to 
instruct the query engine to only return one result. 

6.1.3 Creating a Specialized Lens Template 
The columns in the listing are all showing different properties of 
the resources represented by the rows of the table, but as we 
pointed out earlier, the resources do not all share exactly the same 
schematic representation for these properties. We have therefore 
constructed lenses to abstract away these differences in underlying 
representation. 

To define the “year lens”, we need to create lens templates for 
each of the possible underlying representations of “year”. These 
templates are distinguished by their match patterns. Here is the 
definition for the year lens for the schema:Car class: 
xe:target 
 rdfs:domain :CarYearLens 

                                                                 
5 Because the SPARQL specification is currently a draft, we have 

adopted a syntactic variation on the SPARQL syntax with our 
internal implementation and will update it to conform to the 
final syntax when it is released. The latest SPARQL syntax has 
been incorporated into this paper for ease of readability. 

 
:CarYearLens 
 a    xe:LensTemplate ; 
 xe:role :yearLens ; 
 xe:size xe:inline ; 
 xe:match ( 
  [ a    xe:MatchPattern ; 
   xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> SELECT ?TARGET WHERE ($xe:target 
rdf:type schema:Car)" ; 
   xe:score  "2" 
  ] 

) ; 
 xe:body [ 
  a xhtml:Text ; 
  xe:body [ 
   a      xe:Select ; 
   xe:singleResult "true" ; 
   xe:filter   "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
PREFIX dc: <http://purl.org/dc/elements/1.1/> 
SELECT ?TARGET WHERE ($xe:target schema:model 
?TARGET)" 
  ] 
 } 
} 

6.1.4 The Sold-by Lens 
The lens that shows the list of stores that sell the given resource is 
different from the ones we have seen so far because it embeds a 
list of resources. The sold-by lens template uses an xe:ForEach to 
iterate over the stores that carry the product, wraps each in an 
<LI> tag, and uses an xe:ApplyTemplates to embed the 
appropriate inline view template: 
xe:target 
 rdfs:domain :DefaultSoldByLens 
 
:DefaultSoldByLens 
 xe:role  sample:soldByLens ; 
 xe:match  () ;  # Matches everything 
 xe:body [ 
  a xhtml:UL ; 
  xe:body [ 
   a    xe:ForEach ; 
   xe:select [ 
    a    xe:Select ; 
    xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
SELECT ?TARGET WHERE (?TARGET schema:sells 
?xe:target)" 
   ] ; 
   xe:loopVar :x ; 
   xe:body [ 
    a xhtml:LI ; 
    xe:body [ 
     a xe:ApplyTemplates ; 
     xe:select [ 
      a   xe:Identifier ; 
      xe:name :x 
     ] ; 
     xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
SELECT ?TARGET WHERE (?TARGET xe:size xe:inline) 
(?TARGET xe:role xe:view)" 
    ] 
   ] 
  ] 
 ] 
 



6.1.5 Putting it all together 
Finally we can create a view template for the sample:collection 
resource. First, here is a top level template for driving the 
example: 
sample:CollectionExampleDriver 
 a xe:Template ; 
 xe:body [ 
  a xhtml:P ; 
  xe:body [ 
   a    xe:With ; 
   xe:name  :lensList ; 
   xe:select [ 
    a    xe:Select ; 
    xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
PREFIX : <http://tempuri.org/samplestylesheet#> 
SELECT ?TARGET WHERE (:lenses schema:member 
?TARGET)" 
   ] ; 
   xe:body [ 
    a :CollectionView ; 
    xe:target [ 
     a    xe:Resource ; 
     xe:resource sample:collection 
    ] 
   ] 
  ] 
 ] 
 
sample:lenses 
 :member xe:nameLens ; 
 :member xe:creatorLens ; 
 :member sample:yearLens ; 
 :member sample:soldByLens 
 
The template iterates over the members of the collection and 
embeds a second, helper template that in turn generates a table 
row and embeds the appropriate lenses within <TD> tags. Note 
the use of the dynamically-scoped variable, defined in the driver 
code, for passing in the list of lenses. Because view templates are 
normally invoked via xe:ApplyTemplates, which only accepts one 
parameter, using dynamic scoping permits other parameters to be 
passed through (cf. xsl:with-param in xsl:apply-templates). 
 
xe:target 
 rdfs:domain :CollectionView 
 
:CollectionView 
 a xe:ViewTemplate ; 
 xe:match ( 
  [ a    xe:MatchPattern ; 
   xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> SELECT ?TARGET WHERE ($xe:target 
rdf:type schema:Collection)" ; 
   xe:score  "2" 
  ] 

) ; 
 xe:body [ 
  a xhtml:TABLE ; 
  xe:body [ 
   a xe:ForEach ; 
   xe:select [ 
    a xe:Select ; 
    xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
SELECT ?TARGET WHERE ($xe:target schema:member 
?TARGET)" 
   } ; 
   xe:loopVar :x ; 
   xe:body [ 
    a xhtml:TR ; 
    xe:body [ 

     a :Helper ; 
xe:target [ 

a   xe:Identifier ;  
xe:name :x 

] 
    ] 
   ] 
  ] 
 ] 
 
xe:target 
 rdfs:domain :Helper 
 
:Helper 
 a   xe:Template ; 
 xe:body [ 
  a xe:ForEach ; 
  xe:select [ 
   a   xe:Identifier ; 
   xe:name :lensList 
  } ; 
  xe:loopVar :x ; 
  xe:body [ 
   a xhtml:TD ; 
   xe:body [ 
    a    xe:ApplyTemplates ; 
    xe:select [ 
     a   xe:Identifier ; 
     xe:name xe:target 
    ] ; 
    xe:filter "PREFIX xe: 
<http://haystack.lcs.mit.edu/schemata/xenon#> 
PREFIX : <http://tempuri.org/samplestylesheet#> 
SELECT ?TARGET WHERE (?TARGET xe:role $:x)" 
   ] 
  ] 
 ] 
 

7. DISCUSSION AND RELATED WORK 
There are a number of benefits that arise from the use of a 
functional Turing universal stylesheet ontology such as Xenon. 
First, it is easy to support abstractions that permit presentation 
knowledge to be described to the extent to which a developer, a 
designer, or some other contributor wishes to specify. We have 
described one possible abstraction, views and lenses, that has 
been shown to have broad applicability in Haystack across 
domains as varied as media players, e-mail, and bioinformatics 
[1], but other abstractions are of course possible.  

One theme that is prevalent is the notion that code and data are 
not heavily distinguished, a notion reminiscent of languages such 
as Lisp. In the catalog browser example from Section 6, one sees 
that some pieces of presentation metadata seem more like JSP-
style HTML generation code (e.g., :CollectionView), whereas 
others are more like fragments of configuration data meant to act 
as parameters to other templates  (e.g., sample:lenses). Because 
templates use RDF Schema to describe their parameters, both 
“code” and “data” have the same form and differ only by the 
complexity of the domain they are describing. 

As a result, the stylesheet designer, in creating a presentation 
system, is given a lot of freedom to split the user interface 
specification between the “static code library”—the portion that 
stays fixed—and “customizations”—the part that is provided by 
people contributing ontology-specific adjustments to the system. 
On one extreme, contributors provide only a “bare-bones 
specification” (e.g., a list of important properties as a property of 
the rdfs:Class) that is consumed by a default view template that 
matches against all resources and locates the important properties 
using a query against the class. On the other extreme, contributors 



provide stylesheet templates that use the full expressive power of 
the functional language, including conditional code, loops, 
placeholders for other templates, etc. An example of a paradigm 
in the middle is one in which templates simply call other 
templates with static parameters such as the salient properties for 
each class: 
:PersonViewTemplate  

a xe:ViewTemplate ; 
xe:body [ 

a :DefaultViewTemplate ;  
:importantProperties ( :name :address ) ; 
 
# Pass the target resource through 
xe:target [ 

a xe:Identifier ; xe:name xe:target 
] 

] 
We believe this level of flexibility allows developers to produce 
reusable libraries of code that implement a variety of different 
interface styles. Furthermore, our stylesheet mechanism enables 
systems that rigidly support only one of the extremes given above 
to gradually move to a more general paradigm of template-based 
customization. For example, the Longwell faceted metadata 
browser [3] allows users to visualize a resource that is in focus by 
means of a customizable list of properties. Users can also pivot to 
other resources that are related to the current resource by a shared 
property (these pivot points are called facets). The specifications 
of which properties to display and what facets are available are 
defined against a custom RDF schema. Using the “bare-bones” 
approach, one could construct a stylesheet that read these 
specifications and produced screens similar to those of Longwell. 
Other automatically-generated, form-based RDF user interfaces, 
such as those produced by Protégé [13] and SEAL [2], could be 
reproduced with a similar approach. However, by adding view 
templates that overrode the default templates, one could begin to 
gradually introduce higher levels of customization than those 
implied by the custom RDF schema-driven configuration 
metadata data. 

One difference between Xenon and systems like Protégé is that 
Xenon only attacks the problem of visualizing existing RDF 
content. We are also interested in the problem of interfaces that 
record RDF, as was discussed in a previous paper [9]. The 
Haystack browser supports RDF authoring, but we are looking for 
ways to add authoring support into Xenon. 
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