
SIMILE Bank APIs
Ryan Lee <ryanlee@w3.org>
For designs by David Huynh <dfhuynh@csail.mit.edu>
November 11, 2005
The SIMILE Project <http://simile.mit.edu/>

A description of each layer of API used throughout SIMILE bank applications.

The following is an introduction to the programming interfaces for user-level commands available in

SIMILE bank applications. The SIMILE bank applications - Longwell, on which Piggy Bank and Semantic

Bank are built - implement three interfaces layered on top of one another: JavaScript, HTTP, and Java.

This document starts at the top of the stack and works its way down to the lower level Java API.

API calls in Longwell are also exposed in Piggy Bank and Semantic Bank; both Banks expose their own

additional API calls.

JavaScript
The JavaScript API is a wrapper for the HTTP API, allowing user interfaces the interactivity required to

execute parts of the HTTP API at the user’s discretion. These calls are dependent on page context pro-

vided by the following variables:

g_contextPath where the servlet application is rooted

g_resourcePath where scripts, styles, images, etc. are rooted

g_profileURL the user profile root URL for this page

g_outerQuery the query string used to generate this page

g_slidingURL the URL and non-data related query string fragment of this page

g_slidingQuery the portion of the query string for narrowing down data

1

The JavaScript functions are all implemented in Longwell and used in Piggy Bank and Semantic Bank.

They are grouped under the heading ‘operations’ and are considered a user interface module. The actual

function definitions can be found as client-side script components in the Longwell 2.0 source tree; there is

a dependency on the HTTP utility library.

Longwell

Operations.trust(objectURI, profileID, title)

objectURI Resource to trust

profileID Profile in which to find the resource

title User alert information

If the identified RDF resource’s class is one of several system-defined classes, it will be set to a trusted

object. System-defined actions such as downloading extra code or executing commands can be per-

formed according to the trusted object’s matching rules. These classes include JavaScript and XSLT

screen scrapers.

Operations.distrust(objectURI, profileID, title)

objectURI Resource to distrust

profileID Profile in which to find the resource

title User alert information

Removes trust from the previously trusted identified RDF resource.

Operations.save(objectURI, profileID)

objectURI Resource to save

profileID Profile in which to find the resource

Saves the identified RDF resource found in temporary models, such as those generated from website me-

tadata, into the locally running bank store.

Operations.remove(objectURI, profileID)

objectURI Resource to remove

profileID Profile in which to find the resource

Removes the previously saved identified RDF resource from the locally running bank store.

2

Operations.publish(objectURI, profileID)

objectURI Resource to publish

profileID Profile in which to find the resource

Publishes the identified RDF resource from a locally running bank to all remote banks for all remote bank

users to see.

Operations.persist(objectURI, profileID)

objectURI Resource to persist

profileID Profile in which to find the resource

Persists the identified RDF resource from a locally running bank to all remote banks for a distributed and

private storage.

Operations.saveAll(url)

url URL reproducing currently viewed data set for saving

Saves all RDF resources found at currently viewed data set. URL includes pertinent information (profile

with currently viewed data, narrowing parameters). Assumes data will be saved to the local profile.

Operations.removeAll(url, count)

url URL reproducing currently viewed data set for removal

count User alert information

Removes all data in the currently viewed data set. URL includes pertinent information (profile from

which to remove, narrowing parameters).

Operations.publishAll(publishAllURL, saveAllURL)

publishAllURL URL reproducing currently viewed data set for publication

saveAllURL URL reproducing currently viewed data set for saving

Publishes all RDF resources found in currently viewed data set and saves all resources before publication

if necessary.

Operations.persistAll(persistAllURL, saveAllURL)

persistAllURL URL reproducing currently viewed data set for persistence

3

saveAllURL URL reproducing currently viewed data set for saving

Persists all RDF resources found in currently viewed data set and saves all resources before persistence if

necessary.

HTTP
The HTTP API is a web accessible interface to a data repository, currently written in Java as a set of vari-

ous POST methods. In Semantic Bank, HTTP ‘commands’ for creating bank accounts, deleting data, and

uploading data are exposed to users. In a local bank such as Piggy Bank, HTTP ‘commands’ are provided

for saving web data, publishing and persisting data to a semantic bank, deleting local data, and enabling

or disabling data harvesters. The HTTP API for Piggy Bank is of little use to external applications since

the actions cannot be decoupled from a user’s browsing experience.

An HTTP command specification looks like method url [parameter(s)]. See RFC2616 for more on the

HTTP POST method [1]. This API treats the parameters part of the command as newline-separated val-

ues of the POST payload.

Piggy Bank
Assume the Piggy Bank application is mounted at the URL fragment /piggy-bank

POST /piggy-bank/profile?command=system [trust] [objectURI]

profile Either ‘default’ or an ephemeral model

trust Takes either ‘trust’ or ‘distrust’ as a value

objectURI Set trust level for this identified resource

Called by Operations.trust and Operations.distrust.

POST /piggy-bank/profile?command=save [objectURI]

profile An ephemeral model

objectURI Save this identified resource

Called by Operations.save.

POST /piggy-bank/default?command=remove [objectURI]

objectURI Remove this identified resource

Called by Operations.remove.

4

POST /piggy-bank/profile?command=publish [objectURI]

profile Either ‘default’ or an ephemeral model

objectURI Publish this identified resource

Called by Operations.publish.

POST /piggy-bank/profile?command=persist [objectURI]

profile Either ‘default’ or an ephemeral model

objectURI Persist this identified resource

Called by Operations.persist.

POST /piggy-bank/profile?command=saveAll [slidingQuery]

profile An ephemeral model

slidingQuery Query used to generate currently viewed data set

Called by Operations.saveAll. This could also be a GET operation.

POST /piggy-bank/default?command=removeAll [slidingQuery]

slidingQuery Query used to generate currently viewed data set

Called by Operations.removeAll. This could also be a GET operation.

POST /piggy-bank/profile?command=publishAll [slidingQuery]

profile Either ‘default’ or an ephemeral model

slidingQuery Query used to generate currently viewed data set

Called by Operations.publishAll. This could also be a GET operation.

POST /piggy-bank/profile?command=persistAll [slidingQuery]

profile Either ‘default’ or an ephemeral model

slidingQuery Query used to generate currently viewed data set

Called by Operations.persistAll. This could also be a GET operation

5

Semantic Bank
Assume the Semantic Bank application is mounted at the URL fragment /semantic-bank Note in exam-

ples that necessary but variable bits dependent on the client have been elided; only the essential parts

required specifically for Semantic Bank operation are included.

POST /semantic-bank/profile?command=create

profile Username for new user

Called by native plugin code communicating with remote machine running Semantic Bank. Example:

 POST /semantic-bank/foo?command=create HTTP/1.1

 Host: bank.example.org

 Content-Length: 0

POST /semantic-bank/profile?command=upload&format=[format] [data]

profile Username of user for whom to add data

format rdfxml, the serialization of data; no other options available

data Serialization of the graph to publish to the bank

Called by remote Operations.publish, persist, publishAll, persistAll. Example:

 POST /semantic-bank/foo?command=upload&format=rdfxml HTTP/1.1

 Host: bank.example.org

 Content-Length: 317

! <rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

! xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>

! <rdf:Description rdf:about=”http://www.example.org/ns#item”>

 <rdfs:label>An Example</rdfs:label>

! <rdf:type rdf:resource=”http://www.example.org/ns#Thing”/>

 </rdf:Description>

 </rdf:RDF>

POST /semantic-bank/profile?command=remove [objectURI]

profile Username of user from whom to remove data

objectURI Delete this identified resource

Called by remote Operations.remove. Example:

 POST /semantic-bank/foo?command=remove HTTP/1.1

 Host: bank.example.org

 Content-Length: 30

 http://www.example.org/ns#item

6

Java
The Java API is the lowest level interface available. Servlets interpreting HTTP API commands ultimately

make calls to the Java API. In the Longwell architecture, commands are implementations of the IFlair-

Command interface, which has one method, execute(FlairMessage msg). The FlairMessage object at-

tributes:

FlairServlet m_servlet Flair servlet, controls commands

HttpServletRequest m_request Raw servlet request

HttpServletResponse m_response Raw servlet response

VelocityEngine m_ve Rendering engine for generating returned page

String m_profileID The username associated with a profile

Query m_query The query string

String m_locale User locale (for string localization purposes)

The FlairMessage object methods:

FlairMessage(FlairServlet servlet,

HttpServletRequest request,

HttpServletResponse response,

VelocityEngine ve,

String profileID,

Query query,

String locale)

Creates a new object with the arguments as at-

tributes

Profile getProfile() Returns the user profile given the m_profileID

Query getQuery() Returns the query string, m_query

String getURL(Value v) Converts known URIs to focus-type bank URLs,

tries to convert literals to URLs

IFlairCommand’s are mostly composed of manipulations of information derived from the FlairMes-

sage. It is recommended that developers build on the existing Longwell application. One can examine

the source for each implementation of IFlairCommand for a better idea of what actual actions are taken

when the JavaScript methods are executed or data posted to URLs.

7

Piggy Bank
Assume the Piggy Bank application is mounted at the URL fragment /piggy-bank

edu.mit.simile.piggyBank.servlet.PersistAllCommand

Called by /piggy-bank/profile?command=persistAll

edu.mit.simile.piggyBank.servlet.PersistCommand

Called by /piggy-bank/profile?command=persist

edu.mit.simile.piggyBank.servlet.PublishAllCommand

Called by /piggy-bank/profile?command=publishAll

edu.mit.simile.piggyBank.servlet.PublishCommand

Called by /piggy-bank/profile?command=publish

edu.mit.simile.piggyBank.servlet.RemoveAllCommand

Called by /piggy-bank/default?command=removeAll

edu.mit.simile.piggyBank.servlet.RemoveCommand

Called by /piggy-bank/default?command=remove

edu.mit.simile.piggyBank.servlet.SaveAllCommand

Called by /piggy-bank/profile?command=saveAll

edu.mit.simile.piggyBank.servlet.SaveCommand

Called by /piggy-bank/profile?command=save

edu.mit.simile.piggyBank.servlet.SystemCommand

Called by /piggy-bank/profile?command=system

Semantic Bank
Assume the Semantic Bank application is mounted at the URL fragment /semantic-bank

edu.mit.simile.semanticBank.servlet.CreateAccountCommand

Called by /semantic-bank/profile?command=create

edu.mit.simile.semanticBank.servlet.RemoveCommand

Called by /semantic-bank/profile?command=remove

edu.mit.simile.semanticBank.servlet.UploadCommand

Called by /semantic-bank/profile?command=upload

8

References
1. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L. Leach, P., Berners-Lee, T. HyperText Transfer

Protocol -- HTTP/1.1 Request for Comments 2616, Network Working Group

<http://rfc.net/rfc2616.html>, Jun. 1999.

9

