
Scalability Report on Triple Store Applications

Ryan Lee
July 14, 2004

ryanlee@w3.org

http://simile.mit.edu/

Abstract

This report examines a set of open source triple store systems suitable for The SIMILE Project’s

browser-like applications. Measurements on performance within a common hardware, software,

and dataset environment grant insight on which systems hold the most promise for acting as

large, remote backing stores for SIMILE’s future requirements.

The SIMILE Project (Semantic Interoperability of Metadata In like and Unlike Environments) is a joint

research project between the World Wide Web Consortium (W3C), Hewlett-Packard Labs (HP), the Mas-

sachusetts Institute of Technology / Computer Science and Artificial Intelligence Laboratory (MIT / CSAIL),

and MIT Libraries. Funding is provided by HP.

Contents

1 Introduction 1

2 Problem Statement 1

2.1 Related Work . 2

3 Testing Environment 2

3.1 Hardware Environment . 2

3.2 Dataset . 2

3.3 Application Behavior . 3

4 Stores and Results 3

4.1 Jena . 4

4.1.1 Additional Features . 5

4.1.2 Filesystem . 5

4.1.3 MySQL 3.x . 5

4.1.4 MySQL 4.x . 6

4.1.5 PostgreSQL . 6

4.2 Joseki . 6

4.2.1 Additional Features . 7

4.2.2 RDF/XML Response Format . 7

4.2.3 RDF/N3 Response Format . 8

4.3 Kowari . 8

4.3.1 Additional Features . 8

4.3.2 In-Memory . 9

4.3.3 Network . 9

4.4 3store . 10

4.4.1 Additional Features . 11

4.4.2 Network . 11

4.5 Sesame . 11

4.5.1 Additional Features . 11

4.5.2 Network . 12

4.6 Others . 12

i

5 Comprehensive Results 13

5.1 In-Memory / Local . 13

5.2 Network . 14

6 Conclusion 14

6.1 Future Work . 15

Appendix: Acronyms and Terms 17

References 18

ii

1 Introduction

The goal of the Semantic Web is to ”provide a common framework that allows data to be shared and

reused across application, enterprise, and community boundaries.” [15] While much of the research

on the Semantic Web to date has been in specifying the mechanics of its operation, the Semantic

Interoperability of Metadata In like and unLike Environments (SIMILE) project seeks to apply

Semantic Web principles to real world situations. The SIMILE project is a broad experiment to

test the present state of Semantic Web technology within the real-world library domain and the

framework of the DSpace digital library system [7].

This report focuses on the performance of existing data store systems built specifically for the

Semantic Web. Our intended audience is expected to have a firm background in RDF and its

applications. Those looking for an introduction to the Semantic Web may want to start elsewhere,

perhaps with the W3C Semantic Web Activity website found at <http://www.w3.org/2001/sw/>.

2 Problem Statement

The applications SIMILE is currently building deal primarily with browsing large data stores. For

our purposes, a data store is geared towards storing and returning RDF triples in response to queries.

Inferencing was not an important consideration though the existence of such features is noted. The

metrics we are most interested in are the speeds of loading data into the store, loading data into

the application, configuring the application according to the data, and queries with large expected

results; not all steps are applicable to each system we examined.

Future SIMILE applications may also be concerned with the traditional database transactions of

inserting, updating, and deleting data, but those transactions are beyond the scope of this report.

1

2.1 Related Work

The Semantic Web Advanced Development for Europe (SWAD-E) project published a survey [4] of

free software / open source RDF stores available in 2002. The main concerns of their survey involved

the licensing, interfaces, and language used in writing each system.

3 Testing Environment

Test results are presented from experiments conducted in a consistent hardware environment using

the same set of data within the same application.

3.1 Hardware Environment

The test machine is an Apple Powerbook G4 1.25GHz with 1GB of memory. The test results should

be considered in relation to one another since no one is going to seriously run an applications for

public consumption off of a laptop.

3.2 Dataset

The dataset is a subset of ARTstor [3] art metadata in addition to a subset of the MIT OpenCourse-

Ware (OCW) [12] metadata, both originally given to SIMILE in XML format. A small number of

ontologies, some of them custom made by SIMILE for the ARTstor and OCW datasets, were used

in composing the data in RDF. The raw size is 17.2 MB in RDF/XML format (170,244 triples);

after some application-specific inferencing, including basic OWL inferencing, the dataset size is 27.4

MB in RDF/XML format (279,337 triples). In all tests, we used the post-inferencing dataset.

These datasets were used because of their availability to us; licensing restrictions prevent us from

sharing them in their entirety. The information represented within the data is generally representa-

tive of what can be found in the library domain.

2

At the graph level, the data structure is fairly flat; that is, there are several nodes, some sharing

property-object combinations, but most nodes are not connected to one another. It is comparable

to a couple of very large tables with few references in a relational database.

3.3 Application Behavior

Our testing application, named Longwell, is a faceted RDF browser. Adding support for a new store

to Longwell involves implementing one interface, making it a simple task to add a new store and

to configure which store the application uses. There are two main phases of operation in Longwell:

configuration and user interaction. A pre-configuration phase for loading data into a store is also

considered for in-memory models, where loading is handled by the application, and for local models,

where loading is not handled by the application and depends on the store’s input mechanism.

The configuration phase involves setting up an in-memory RDF model cache, used in Hybrid and

network models, and other cache-like performance enhancements. A separate display configuration

phase follows. When both configuring phases are complete, the web application is made available

to users for browsing the loaded data via their user-agent of choice. For our tests, the user load was

restricted to a single user.

For each system examined, the following statistics are given:

Read in RDF data Time to load data into the application or local store, if applicable
Configure browser Time to initialize caching and optimizations
Display setup Time to set up proper display
Load page Time to load first page of application, by far the largest

4 Stores and Results

The following applications were found to be in a state ready or nearly ready for basic testing with our

application. Each of the applications is treated with a brief description of its authors and intended

3

use, underlying technology, additional features unused by our application, interaction method with

Longwell, and the respective test results.

Comprehensive results comparing all the stores we examined are in the following section, Section 5.

4.1 Jena

Hewlett-Packard Labs’ SWAD-E team maintains Jena, ”a Java framework for building Semantic Web

applications,” [9] available as open source software under a BSD license. Jena implements APIs for

dealing with Semantic Web building blocks such as RDF and OWL; our Longwell application is

built upon Jena.

Jena’s fundamental class for users is the Model, an API for dealing with a set of RDF triples. A

Model can be created from the filesystem or from a remote file. Using JDBC, it can also be tied to

an existing RDBMS such as MySQL or PostgreSQL, the two open source RDBMS’s we tested.

There are three variants of dealing with Jena’s Model presented in the results. The JenaLocalModel

behaves as if the entire set of triples were in-memory. While actually storing everything in-memory

cannot be a serious method for storing extremely large volumes of data, it is a useful benchmark to

measure against and a potentially useful way to cache data obtained from remote stores.

The RDQLLocalModel naively queries a Model using the RDQL query language instead of Jena’s

Model API. Very little is cached for the users’ sake, so all user interaction through the web application

ends up relying on accessing the store, and through non-optimal queries at that.

The RDQLHybridModel uses RDQL queries to initialize an in-memory cache from a store. All user

interaction after initialization uses Jena’s Model API on the cached data and does not require any

communication with the store. This is a very simple caching strategy that does not require any

replacement strategies; we anticipate this will change as our datasets grow.

4

4.1.1 Additional Features

Jena contains a rich set of features for dealing with RDF including an inferencing engine, the ability

to reason using custom rules, and OWL-based ontology processing.

4.1.2 Filesystem

JenaLocalModel

Read in RDF data 66979 ms
Configure browser 247 ms
Display setup 14 ms
Load page 1995 ms

RDQLLocalModel

Read in RDF data 67143 ms
Configure browser 2 ms
Display setup 51 ms
Load page 34885 ms

RDQLHybridModel

Read in RDF data 67503 ms
Configure browser 19306 ms
Display setup 42 ms
Load page 2069 ms

4.1.3 MySQL 3.x

MySQL versions 3.23 and 4.0.17 were both used in testing. Loading the dataset into MySQL 3 took

667138 ms.

JenaLocalModel

Configure browser 3729 ms
Display setup 208 ms
Load page 69013 ms

RDQLLocalModel

Configure browser 4 ms
Display setup 78 ms
Load page 85767 ms

RDQLHybridModel

Configure browser 50693 ms
Display setup 52 ms
Load page 1638 ms

5

4.1.4 MySQL 4.x

Loading took 844257 ms in MySQL 4.

JenaLocalModel

Configure browser 5266 ms
Display setup 242 ms
Load page 81039 ms

RDQLLocalModel

Configure browser 2 ms
Display setup 126 ms
Load page 97682 ms

RDQLHybridModel

Configure browser 30542 ms
Display setup 116 ms
Load page 1843 ms

4.1.5 PostgreSQL

With PostgreSQL version 7.4, loading the dataset into the database took 971784 ms.

JenaLocalModel

Configure browser 6194 ms
Display setup 298 ms
Load page 115791 ms

RDQLLocalModel

Configure browser 3 ms
Display setup 95 ms
Load page 111246 ms

RDQLHybridModel

Configure browser 27526 ms
Display setup 54 ms
Load page 1950 ms

4.2 Joseki

The SWAD-E group at HP Labs also maintains Joseki, a web application ”for publishing RDF

models on the web.” [10] Joseki is also available under a BSD license. It is built on Jena and, via its

flexible configuration, allows a Model, represented as a set of files or within a database, to be made

available on a specified URL and queried using a number of languages. Results can be returned as

6

RDF/XML, RDF/N3, or NTriples. The query languages, result formats, and model sources can be

extended to produce new alternatives tailored to the user’s needs.

Tests with different result formats and different stores all using the RDQL query language are

presented below. Note that our application and the Joseki application were running on the same

machine, so during the configuration phase, network communication was at an optimum (no col-

lisions), but processor resources were divided. In a real setup, the Joseki application would more

likely be running on a remote machine. As in the Hybrid style models, results from Joseki queries are

cached in-memory during the configuration phase, and no further communication with the remote

store is necessary after initialization is complete.

4.2.1 Additional Features

Joseki’s other query mechanisms include fetching the entire model, fetching only the direct relations

to a particular node, and a subject-predicate-object query language similar to Jena’s API.

Some small extensions were added through Joseki’s extension mechanism to enable Joskei and Kowari

to work together (see the Kowari section below). This turned out to be an easy and quick operation.

4.2.2 RDF/XML Response Format

Joseki’s default response format is the normal RDF/XML serialization.

Filesystem

Configure browser 172911 ms
Display setup 5347 ms
Load page 1752 ms

MySQL

Configure browser 209485 ms
Display setup 5281 ms
Load page 1508 ms

PostgreSQL

Configure browser 266691 ms
Display setup 7134 ms
Load page 1490 ms

7

4.2.3 RDF/N3 Response Format

The informal RDF/N3 serialization tends to be more concise than the same graph expressed in

RDF/XML; it was hoped the savings in bandwidth would lead to better performance.

Filesystem

Configure browser 181657 ms
Display setup 5044 ms
Load page 1510 ms

MySQL

Configure browser 217934 ms
Display setup 5609 ms
Load page 1725 ms

PostgreSQL

Configure browser 193682 ms
Display setup 6910 ms
Load page 1803 ms

4.3 Kowari

Tucana Technologies [17] provides an open source version of its commercial Tucana Knowledge

Server called Kowari [11]. Kowari is an entirely Java based transactional, permanent triple store

available under the Mozilla Public License. It does not rely on an external RDBMS to provide

the actual store, implementing its own transactional database instead. Several different methods of

communication with a Kowari store are available, including RDQL via its implementation of the

Jena Model, though a custom language named iTQL (Interactive Tucana Query Language) is better

documented. iTQL allows some flexibility not in RDQL such as result set size limits. We moved

from version 1.0.1 to 1.0.3 during testing.

4.3.1 Additional Features

Kowari includes a Lucene index of stored data for full-text searching. Kowari offers connections

through SOAP and RMI as well as implementations of interfaces from Jena and JRDF. Management

8

of the stores is done through a web application. Also included is a feature called Descriptors which

appears to be similar to an XSLT pipeline, but we did not make use of this feature.

4.3.2 In-Memory

It is possible to create a Kowari store within our Longwell application, but, as above, the in-memory

store is not one we are seriously evaluating as a long-term solution. As a separate implementation

of Jena’s Model interface, it was interesting to see how it compared, if only because implementations

other than Jena’s are somewhat rare.

Read in RDF data 177778 ms
Configure browser 2166 ms
Display setup 95 ms
Load page 107013 ms

4.3.3 Network

Kowari 1.0.3 provides several interfaces for querying data from a remote store. Loading data from the

filesystem into Kowari took 139092 ms. The following test was done with the naive query strategy

using iTQL over Java’s Remote Method Invocation (RMI) protocol. As the querying strategy is

poor and used for every part of every user page view in Longwell, the amount of time it took to

load the first page was beyond the author’s patience. This is not a serious strategy, only intended

to be a benchmark. The subsequent model used iTQL over RMI to generate an in-memory cache.

The end result for users was substantially better.

iTQL over RMI

Configure browser 9204 ms
Display setup 411 ms
Load page > 107 ms

iTQL with caching over RMI

Configure browser 80304 ms
Display setup 479 ms
Load page 1670 ms

9

Because Kowari implements Jena interfaces, it was a good candidate for use as an alternate source

in Joseki.

Kowari+Joseki, RDQL over HTTP, RDF/XML response

Configure browser 194442 ms
Display setup 9304 ms
Load page 1602 ms

Kowari+Joseki, RDQL over HTTP, RDF/N3 response

Configure browser 205763 ms
Display setup 10074 ms
Load page 1661 ms

4.4 3store

3store [1] is maintained by a development team at The University of Southampton and used within

the Advanced Knowledge Technologies (AKT) project. 3store ”is a core C library that uses MySQL

to store its raw RDF data and caches” [2] and relies on Redland [14], an RDF interface project

grounded in its C library, developed by Dave Beckett of Bristol University’s Institute for Learning

and Research Technology. 3store is available under the GPL, and Redland under the LPGL or MPL

licenses.

During our testing, 3store moved versions from 2.2.14 to 2.2.17, in part due to developments dis-

covered by our testing. Contributions from the 3store developers enabled our tests to proceed. As

of the release of this report, note that 3store works best with MySQL 3.x versions, not MySQL 4.x.

We wrote a small Java class using SAX to deal with the XML results 3store returns when queried via

RDQL over HTTP to its Apache module. Again, note that the network delay here is at a minimum

while processing resources were split between Apache, MySQL, and Longwell. The results were

cached in an in-memory store for browsing.

10

4.4.1 Additional Features

3store can infer RDF and RDFS entailments and can also communicate using the OKBC protocol

through an Apache module.

4.4.2 Network

Loading data into 3store took 213088 ms.

Configure browser 38440 ms
Display setup 2371 ms
Load page 1908 ms

4.5 Sesame

”Sesame is an open source RDF database with support for RDF Schema inferencing and querying.”

[16] Now at version 1.0.2, Sesame is distributed by Aduna BV, NLnet Foundation, and volunteers

under the GPL license. Written in Java, Sesame is intended to be run as a web application; the

documentation seems to indicate using Tomcat as the servlet container is easiest, so we used Tomcat

5.0.25.

Much like Jena, Sesame can use open source RDBMS’s MySQL and PostgreSQL in addition to its

in-memory database. All three options were tested.

4.5.1 Additional Features

It is possible to run Sesame as a standalone repository without the web application portion, but this

wasn’t tested due to time constraints and a lack of architectural interest (since our project does not

intend to constrain repositories to local operation in the long term). Sesame also supports custom

inferencing and can perform RDFS entailment.

11

4.5.2 Network

Precise loading times were not gathered, though the order of speed was loading into memory, then

MySQL, and finally PostgreSQL. Queries were written in RDQL and sent over HTTP. The response

returned the answer in Sesame’s XML format and parsed in our application by Sesame’s client

libraries. The result was an in-memory cache used for browsing.

In-Memory

Configure browser 20488 ms
Display setup 1428 ms
Load page 1745 ms

MySQL 3

Configure browser 40865 ms
Display setup 2186 ms
Load page 1887 ms

PostgreSQL

Configure browser 66970 ms
Display setup 4378 ms
Load page 2047 ms

4.6 Others

We are aware of other existing open source RDF stores, particularly asemantics’ RDFStore and MIT

CSAIL’s Cholesterol, a component of the Haystack framework, but we were unable to do a timely

evaluation of their work due to programming language barriers (our application is written entirely

in Java, and our time constraints did not allow us to write full Java APIs or RDQL interfaces for

those projects that did not already implement their own).

We are interested in other options and certainly cannot claim this report to be a comprehensive

survey, but the more work required to glue our system and a store together, the less likely we will

be able to do it.

12

5 Comprehensive Results

5.1 In-Memory / Local

Given our architectural desire to place data stores physically separate from our application, the

in-memory or otherwise local interaction models will very likely not be used as full stores, despite

their generally better performance. However, some combination of in-memory or local store may be

useful for caching purposes. Combined results for all non-remote stores are given in table 1.

Model Load Configure Display Browse
JenaLocalModel (Files) 66979 247 14 1995
JenaLocalModel (MySQL 3) 667138 3729 208 69013
JenaLocalModel (MySQL 4) 844257 5266 242 81039
JenaLocalModel (Postgres) 971784 6194 298 115791
RDQLLocalModel (Files) 67143 2 51 34885
RDQLLocalModel (MySQL 3) 667138 4 78 85767
RDQLLocalModel (MySQL 4) 844257 2 126 97682
RDQLLocalModel (Postgres) 971784 3 95 111246
RDQLHybridModel (Files) 67503 19306 42 2069
RDQLHybridModel (MySQL 3) 667138 50693 52 1638
RDQLHybridModel (MySQL 4) 844257 30542 116 1843
RDQLHybridModel (Postgres) 971784 27526 54 1950
KowariLocalModel 177778 2166 95 107013

Table 1: In-Memory / Local

13

5.2 Network

Combined results for all remote stores are shown in table 2.

Model Configure Display Browse
Joseki+RDF/XML (Files) 172911 5347 1752
Joseki+RDF/XML (MySQL 3) 209485 5281 1508
Joseki+RDF/XML (Postgres) 266691 7134 1490
Joseki+RDF/XML (Kowari) 194442 9304 1602
Joseki+RDF/N3 (Files) 181657 5044 1510
Joseki+RDF/N3 (MySQL 3) 217934 5609 1725
Joseki+RDF/N3 (Postgres) 193682 6910 1803
Joseki+RDF/N3 (Kowari) 205763 10074 1661
KowariITQLModel 9204 411 > 107

KowariITQLHybridModel 80304 479 1670
3store 38440 2371 1908
Sesame (Files) 20488 1428 1745
Sesame (MySQL 3) 40865 2186 1887
Sesame (Postgres) 66970 4378 2047

Table 2: Network

6 Conclusion

Drawing conclusions about remotely accessible stores is more pertinent to our project requirements.

In passing, it seems MySQL 3 performs the most quickly in general as a Jena store, and Kowari

14

shows some great promise with its order of magnitude less time for configuration and its speed of

loading data into the store.

Browsing and configuration times were the most pertinent figures to our future work. We don’t

believe the browsing times are really significant beyond the second granularity, so by that metric,

it appears models with a performance between one and two seconds are potentially worth pursuing.

All of our network models with caching appear to fall in that range, which is perhaps not a surprise

since all of them implement caching in approximately the same fashion.

This leaves configuration time as the more interesting metric - how fast does a store return its results

for creating the in-memory cache? For network models, the fastest were 3store and Sesame with

files, though using files for the remote store is akin to using an in-memory model for our application,

meaning it probably is not feasible for extremely large stores. So 3store and Sesame using MySQL

3 appear to be our best choices.

The non-Joseki-based remote stores are approximately an order of magnitude faster at cache initial-

ization. Perhaps this should be expected because the focus of the Jena and Joseki projects has been

more on doing things correctly instead of doing them as quickly as possible.

These single-run figures from a laptop seem to indicate that at this scale, Sesame and 3store are

the most worthwhile for exploring as remotely accessible stores for even larger datasets. Given that

future caching strategies will probably require more advanced techniques than the current simple one

of grabbing everything and sticking it all in memory and never replacing anything, a fast turnaround

from the store to our application is essential.

6.1 Future Work

There are other stores worth examining, and there is more data for our project to consume. We

hope to continue in the same vein as this initial foray in the future with another report on larger

15

scale store performance, perhaps with a broader selection of systems to compare against.

16

Appendix: Acronyms and Terms

Apache Shorthand for the Apache Foundation’s httpd web server

API Application Programming Interface

CSAIL MIT Computer Science and Artificial Intelligence Laboratory

HTTP HyperText Transfer Protocol

JDBC Database connection standard for Java

Lucene Text-searching software provided by the Apache Foundation

N3 An informal shorthand serialization of RDF

NTriple An informal serialization of RDF, similar to but distinct from N3

OKBC Open Knowledge Base Connectivity

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

RDQL RDF Data Query Language

RMI Remote Method Invocation

SAX Simple API for XML

SIMILE Semantic Interoperability of Metadata in Like and unLike Environments

SWAD-E Semantic Web Advanced Development for Europe

XML Extensible Markup Language

17

References

[1] 3store. <http://sourceforge.net/projects/threestore/>

[2] AKT - Technologies - 3store from the University of Southampton.
<http://www.aktors.org/technologies/3store/>

[3] ARTstor. <http://www.artstor.org/>

[4] D. Beckett. SWAD-Europe: Scalability and storage: Survey of free software / open source RDF
storage systems, 2002. <http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage report/>

[5] D. Beckett. SWAD-Europe: Tools for Semantic Web Scalability and Storage: Imple-
mentation report on scalable Free Software /Open Source RDF storage system, 2003.
<http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage impl/>

[6] D. Beckett, J. Grant. SWAD-Europe: Mapping Semantic Web Data with RDBMSes, 2003.
<http://www.w3.org/2001/sw/Europe/reports/scalable rdbms mapping report/>

[7] DSpace. <http://www.dspace.org/>

[8] S. Harris, N. Gibbins. 3store: Efficient Bulk RDF Storage, 2003. <http://km.aifb.uni-

karlsruhe.de/ws/psss03/proceedings/harris-et-al.pdf>

[9] Jena. <http://jena.sourceforge.net/>

[10] Joseki. <http://www.joseki.org/>

[11] Kowari. <http://www.kowari.org/>

[12] MIT OpenCourseWare. <http://ocw.mit.edu/>

[13] E. Prud’hommeaux, B. Grosof. RDF Query Survey, 2001. <http://www.w3.org/2001/11/13-RDF-

Query-Rules/>

[14] Redland RDF Application Framework. <http://www.redland.opensource.ac.uk/>

[15] W3C Semantic Web Activity. <http://www.w3.org/2001/sw/>

[16] Sesame. <http://www.openrdf.org/>

[17] Tucana Technologies, Inc. <http://www.tucanatech.com/>

18

